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Diffusion-limited aggregation as a Markovian process: Site-sticking conditions
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Cylindrical lattice diffusion-limited aggregation, with a narrow width is solved for site-sticking condi-
tions using a Markovian matrix methdavhich was previously developed for the bond-sticking ¢a$ais
matrix contains the probabilities that the front moves from one configuration to another at each growth step,
calculated exactly by solving the Laplace equation and using the proper normalization. The method is applied
for a series of approximations, which include only a finite number of rows near the front. The fractal dimen-
sionality of the aggregate is extrapolated to a value near 1.68.
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I. INTRODUCTION and 7[14]. The solution presented in the latter case is not
exact, but still, it presents a well-controlled series of approxi-

Diffusion-limited aggregation(DLA) [1] has been the mations in the sense that any desired numerical accuracy
subject of extensive study since it was first introduced. Thigould be obtained, provided that a sufficiently high order of
model exhibits a growth process that produces highly rami@pproximation is used. The difficulty with performing a
fied self-similar patterns, which are believed to be fractaldhigh-order calculation is that its complexity grows exponen-
[2]. It seems that DLA captures the essential mechanism ifially.
many natural growth processes, such as viscous fingering The main idea in these references and in this paper is to
[3], dielectric breakdowii4,5], etc. In spite of the apparent follow the dynamics of the growing front. The shape of the
simplicity of the model, an analytic solution is still unavail- interface determines the unique solution to the Laplace equa-
able. Particularly, the exact value of the fractal dimension igion that determines the growth probabilities. The structure
not known. Some of the analytic approaches employed so f&f the aggregate behind the interface is irrelevant and so is
include the fixed-scale transformati¢RST) [6], real-space the history that led to the current interface. Each growth
renormalization grougRSRG [7-9], and conformal map- Process changes the interface. We can therefore describe
ping [10—13. DLA as a Markovian flow in the space of interface configu-

In DLA there is a seed cluster of particles fixed some-rations. The Markov states are the possible shapes of the
where. A particle is released at a distance from the clusteinterface, which are indexed by an integer, usually denoted
and performs a random walk until it attempts to penetrate th®y i or j. Pi(t+1), the probability that the interface is in
fixed cluster, in which case it sticks. Then the next particle isstatei at timet+ 1, depends only on the state of the interface
released, and so on. There are two common types of stickingt timet. The conditional transition probabilities from stjte
conditions. The sticking condition described above is calledo statei make up the evolution matrik; ; , which is time-
“bond DLA,” because it occurs when the random walker independent. Thus, the dynamics of the Markov chain is de-
attempts to cross a perimeter bond between an unoccupi&gribed by the Master equations,
site and the aggregate. In an earlier pdfdi, we solved the
bond-DLA problem using a Markovian process. Here we ap- .
ply similar methods to the “site-DLA” case, where sticking Pi(”l):z: EijPi(D), 1=12,.... 1.
occurs as soon as the random walker arrives at a site that is a :
nearest neighbor to the aggregate. Since it is believed that t . :
large-scale structure of DLA is not sensitive to the type ofq:e"’lCh matrix elemer; ; corresponds to a particular growth

sticking conditions usefL5,6], one expects both problems to pr;)_cess, ?\nd the su[)n pfuns ot\)/er_ afl_l thel mter;acet cofm;llgu-
yield the same asymptotic fractal structures. rations (whose number may be infinjteln order to fully

DLA can be grown in various geometries. In this paper,de.s.c.ribe the dynamic;, it is necessary to calculate the prob-
we deal with the cylindrical geometry in two dimensions abilities of all the possible growth processes, for each of the

2D), where the particles are emitted from a distant horizonPOSsible initial configurations of the interface. We calculate
(2D) P 1the growth probabilities by solving the discrete Laplace

tal line at the top, while the seed cluster is a parallel line a . lattice f f ioh . which d
the bottom, with periodic boundary conditions on the sides€duation on a lattice for a functich, which corresponds to

We only consider relatively narrow cylinders, with widths (€ @verage density of random walkers,
ranging fromN=2 to N=10. Even though the analysis in 5
this paper is solely 2D, the same techniques can be applied in V<o =0. (1.2
higher dimensions.

An exact solution of bond DLA wittN=2 was published In the dielectric breakdown mod¢DBM) [4,5], ® has an
in 1998 [16]. A generalization of the same approach waselectrostatic meaning, so it is also commonly referred to as
used in order to solve slightly wider cases wNtbetween 3  the “potential.”
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Usually, the equation sét.1) is infinite because the num- Markov theory states that a closed and irreducible process
ber of possible shapes the interface may assume is unlimitedecessarily has a single fixed poirt7]. This fixed point
This may pose a problem for two reasons. For one, it igepresents the steady-state probabilities for the various inter-
difficult to include all of the possibilities systematically. The face configurations in the asymptotic time limit. The theorem
case of bond DLA witiN=2 is a Counterexamme, where the is also true for an infinite number of states, so one can con-
complete set of possible configurations can be easily charaglude that the unapproximated process also converges to a
terized using a single parameter. This is because the interfagééady state. As mentioned, this steady state is characterized,
has the shape of a step whose heigitan be any non- for example, by_ a tlme-lndependent average density
negative integef16]. For N>2, however, it is very difficult The fixed-point equations are
to parametrize the shape of the interface, even with the use of
more than one parameter, because complex overhangs may P} :Z Ei,jP;‘ , 1=12,... . 1.3
occur[14]. The second problem is that even if it were pos- ]

sible to account for a complete infinite set of conflguratlons,-l-hiS means thaP* is the normalized eigenvector of the

it would still be awkward to analyze the Markov process, oo\ tion matrixE with an eigenvalue of 1. Once the steady
e.g., finding its fixed point. Instead of accounting for all thestateP* is calculated, it is possible to evaluate the steady-
configurations, we make an approximation by employinggiaie average upward growth probability,

some consistent truncation scheme on the list of configura-

tions. In theOth-order approximation we include only the Ne

top O rows of a configuration and truncate the rest; the list of (Pup* =2 PFpud), (1.4
configurations is sorted according to the maximal height dif- =

ference Am, between the lowest and highest particles on thQ/vherepup(j) is the total upward growth probability for con-

interface[14]. In the Oth-order approximation, only a finite figyrationj. The average steady-state density of the aggre-
set of configurations withm= O is taken into account. The gate is then given by

configurations withAm>O are truncated so that only their

top O rows are taken into accoufttielow theOth row all the

sites are considered to be occupiethis truncation does not p(N)=———. 1.9
have a noticeable effect on the upward growth probability N(Pup)

(the growth probabili@y at th_e tip becau;e of the exponential .Here, the density is written explicitly as a function ef By
decay of.the potential inside .dee.p flords. Because of thIS(N) we denote the true value of the density, in the limit
exponential decay, the approximation converges very fast _o0. We denote the result of th@th-order approximation
a function ofO. Unfortunately, the number of configurations by p ('N 0)

Cc 1 .

diverges exponentially witld, so that the calculation can be As mentioned, the number of configurations grows expo-

C"’.lmed out only for relatively low ordefdepending on the nentially withO andN, so it becomes unfeasible to make the
width N and on the strength of the computer g .
calculation for high values dd andN. We perform calcula-

. In the case of site DLA the situation is a bit simpler thantions forN=<10. The calculated densities and the number of
in bond DLA, because it is generally harder for the random

walker to penetrate deep into a fiord. A particle will only be configurations are presented in Sec. Il. We find that in order

able to enter fjords that are at least three sites wide, unliket':J obtain a relative accuracy of about T0it is necessary to

the case of bond DLA, where a patrticle can go into a single-go up to0=N—2 orO=N—1. This is achieved foN<8,

column fjord. This makes the solution of site DLA witk but for N=9,10 it is too heavy a task for our computer re-
sources. In spite of this, we are able to successfully extrapo-

=2 andN=3 much simpler, because they both have only S - =
finite number of interface configurations. The narrowest cyla—]ateo to infinity for N=9 andN=10. The calculated den-

inder that can have an arbitrarily deep fjdia configuration s?ties are (_:ompa_red to direct measurements from cylindrical
with an arbitrarily largeAm) arises forN=4, and thus there site-DLA simulations, and are found to be the same up to the
’ accuracy of the simulation, which is about 0.01% or better.

is an infinite number of configurations. However, there can The fractal dimensio is extracted from the assumption
be no fluctuations in the width of the fjord, so in this sense P

—(d-D) =2 j i i -

this case resembles ti=2 case in bond DLA. FON>4, thatp(N)ocN » Whered=2 is the Euclidean dlm(_an
the approximation method must be used, but generally, fop'on- In genera}l, one shouI’d "’?'50 expect some corrections to
the sameN and O the number of configurations in site DLA scaling, especially for low’s, i.e.,
is muc.h smaller than in bpnd DLA, so it is_possible to per- p(N)=AN-E=D)(1+B/N+ .. .), (1.6)
form higher-order calculations for wider cylinders.

Once an order of approximatiddis chosen, there is only \hereA andB are some constants, represents the leading
a finite number of configuration®y:(N,O), which depends correction exponent, and the dots stand for a series of higher
both onN and onO. The Markov process is then closed and powers of 1N. This scaling hypothesis is validated by both
irreducible. Closed means that, ° E;;=1 for | the analytic enumeration computation and by the simula-
=1,... N, and irreducible means that there is a finitetions, which were conducted up t=128. The best fit of
probability to go from any initial statgto any final state ~ such a model to the enumeration data results in an estimate
during a finite number of time steps. A basic theorem inof the fractal dimension of cylindrical DLA in 2DD
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=1.68+0.01. The same fit is also performed with the simu-The finite set of allowed wave vectots=(27/N)I for |
lation data, yieldingD =1.671+0.001. This is to be com- =0, ... N—1 is imposed by the horizontal periodicity. The
pared with the valud~1.66 often found in the literature factor «; is related tok, through the dispersion relation
[61. | |

The differences between bond DLA and site DLA are sinh(k/2) = = sin(k/2), (1.10
manifested in the boundary conditions for the Laplace equa- .
tion, and in the way the growth probabilities are extracted® more explicitly,
from the potentialP. The boundary conditions at the top are e *0=2_ cogk)—\[2— o TP—1. (111

An interesting property of the Green’s function is that
l, I’]=0,...,N-1, (17) N—1

n§=)o gn(n)=1. (1.12

atb(m,n)_

lim
am

m— o

wherem is the vertical directiorithe growth directionandn ~ This property was proved algebraically in REE6] and was
denotes the periodic lateral direction. This describes a uniused in Refs.[16,14 to check the computations of the
form flux of incoming particles. In the original DBM papers Green’s function. It is also used in the sample calculation of
[4,5], a uniform potential is used instead of a uniform gradi-Sec. Il B in the current paper for the same purpose.
ent, but if the distant boundary is very far, then the differ- Usually, there is no general derivation for the solution in
ences between the solutions for the two cases are exponeifie lower part. In spite of that, the number of sites in the
tially small [16]. The determination of the boundary lower part is finite and not too large, so it is possible to
conditions on the aggregate should be done with care. In th&imply write the equations for each of the potentials. The
case of bond DLA, the potential is set to 0 on the aggregat&olution of the resulting finite and linear set of equations is
itself, while in site DLA the potential should be set to 0 on then straightforward.
nearest-neighbor sites, i.e., on sites where growth might oc- The paper is organized as follows. In Sec. Il, we present
cur. Also, the derivation of the growth probabilities from the in detail the differences in the computation of the growth
potential in site DLA is done a bit differently than in bond Probabilities between bond- and site-sticking conditions.
DLA, as explained in the next section. This presentation also explains the connection with the
The Laplace equation with these boundary conditions cahaplace equation more rigorously. After that we perform a
be solved exactly16,14. The idea is to divide the plarer ~ few sample calculations, foN=2 andN=3, in order to
space in higher dimensionito two parts. The upper partis demonstrate the method presented in the Introduction. We
an empty semi-infinite rectangle that begins at the row of théhen report the results of the computations fobetween 4
highest site on the lower boundary and continues upwadrd and 10 for various orders of approximatio@sWe point out
infinitum The lower part contains the aggregate and extend#at the results collapse onto a universal function that enables
from the highest row downwards. The row that contains th¢he extrapolatiorO—o for N=8, 9, and 10. This extrapo-
highest particle in the aggregate is usually set as a referend@tion reduces the error appreciably. In Sec. Ill, we present
row with m=0. Thus, in bond DLA, the upper part has  the simulation we made in order to verify our theoretical
=0 and the lower part has=<0, and in site DLA, the upper Predictions. This presentation also explains how the bound-
part hasn=1 and the lower part has=<1 , as explained in ary Green's functiorgy(n) is used in some way as a prob-
more detail in Sec. Il. Note that in either case the dividingability function, in order to make the simulation more effi-
row is considered to belong to both parts. In the upper partient. We summarize in Sec. IV.
it is possible to express the potentials in row 1 as a linear

combination of those in rown, Il. ENUMERATION
Our computation method is referred to as enumeration,
N-1 because it involves a systematic processing of some com-
d(m+1n)=1+ > d(mn’)gy(n—n’). (1.9 plete lists of configurations.
n"=0

A. The differences between site- and bond-sticking conditions

There are two differences between site- and bond-sticking
‘conditions. The first is in the boundary conditions used for
the solution of the Laplace equation, and the second is in the
way the potentials are used to determine the growth prob-
abilities. In order to explain this, it is important to understand
the subtleties of the relation between DLA and the Laplace

This is especially useful for the bottom row of the upper part
m=0 or m=1 (depending on the type of sticking condi-
tions). The boundary Green’s functiogy(n), appearing in
Eq. (1.8), is given by

N-1 equation. In DLA, the random walker is injected into a ran-
gn(n)=— 2 e~ cogkn). (1.9 dom site near the remote boundary and it diffuses until it
N N i=o attempts to cross a perimeter bond, in which case it gets
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stuck. A possible way of measuring the growth probabilities 0P
for a particular interface configuration is to send many ran- om 1

dom walkers, one after the other, and remove them after they mAk . . . . .
stick. One has to keep track of how many particles get stuck ' ' ' ' '
in each site. Eventually, the growth probabilities per site are 2 | 2.58|2.54| 2.58| 2.62| 2.62
estimated by the fraction of particles that got stuck in each
site. Instead of releasing the random walkers one at a time, it 1 | 159 1.43] 1.57| 1.66| 1.68
is more efficient to release many of them simultaneously,
and let them perform a random walk without interacting with
each other. Moreover, instead of releasing a large amount of
particles in a single batch and waiting until all of them stick,

it is also possible to inject them at a constant rate near the 2
boundary, i.e., in each time step inject a new patrticle into

each site near the boundary with a uniform probabilityhe o123t g4t

advantage in this way of performing the measurement is that ®—0

after an initial equilibration time the system arrives at a

steady state, which is characterized by a time-independent FIG. 1. An example of the solution of the Laplace equation
average number of random walkers in all of the sites, includ¥?®(m,n)=0, with boundary condition>=0 on the aggregate
ing sites that are not near any of the boundaries. In the steadynd ¢®/dm=1 on the upper distant boundary. Here, the width is
state, the average number of random walkers entering intd=5 and there are periodic boundary conditions on the sides. The
the system in each time step at the upper boundary is equakes indicate the directions of the coordinatasand n. These

to the average number of random walkers vanishing out oboundary conditions are consistent with bond-sticking conditions.
the lower boundary. Denote the average number of random ) ] ] . )

walkers in each site in the steady statedym,n); then it analyt_lc expressions mvolved_ln_the solutlo_n_ _of the La_place
satisfies the discrete Laplace equatidr?), because every €guation, while leaving the sticking probabilities practically

random walker is equally likely to go to any one of its near-unchanged. _ _
est neighbors and becaugeis time-independent. The difference between site and bond DLA appears in the

Special care should be give to sites near the boundariegottom boundary conditions. In bond DLA, each random
Near the upper boundary, each site has only three nearedglker that attempts to go into the aggregate is taken out of

fore, are nearest neighbors to the aggregate, if we choose the

boundary conditionsb=0 on the aggregate itself. In site
1 DLA, random walkers are removed as soon as they arrive at
®(mn)=Z{e(mn-1)+&d(mn+1)+>(m-1n) sites that are nearest neighbors to the aggregate and therefore
we impose® =0 there instead. Figure 1 shows the solution
+P(m,n)]+r. (2.)  to the Laplace equation around a particular aggregate for
bond-sticking conditions, and Fig. 2 shows the solution near

Note that the last term on the left befares ®(m,n), instead

of ®(m+1,n), because the particles that randomly choose to m A T
go up are unable to do so because of the boundary, and T T T T '
therefore they remain in the same place. Now, let us define 3 | 253|249 253| 2.56| 2.56

d(m+1n)=d(m,n)+4r as a fictitious density above the
boundary. Then we see that Eg.1) turns into the standard
Laplace equation. This shows that instead of using the injec-
tion rate parametar, it is possible to use the regular Laplace
equation with the Neumann-type boundary conditions that 0 Q
require the specification of the electric field, which corre-

2 [1.53]138|152(1.61]1.62

1 |058]() ] 057|074 078

e e e e | EE B
poebies o e ee o shove e e+ (TR
0'1"'"2"3"'"4"

the top are

FIG. 2. The solution to the Laplace equation near the same
aggregate as in Fig. 1, only with site-sticking conditions. The
%Eq)(m‘F 1n)—®(m,n)=1 (2.2 circles denote the perimeter sites where a random walker might
stick. The boundary conditions are thht=0 on these sites, unlike
the case of bond-sticking conditions whebe=0 on the aggregate
for n=0,1, ... N—1. We choose the upper boundary to beitself. The boundary conditiong®/dm=1 at largem remain un-
very far away from the lower one, because this simplifies thehanged.
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FIG. 3. Two different aggregategepresented by the dashed
squares with N=2, having exactly the same set of sites where a )
random walker may stickshown in circle§ and thus having
the same boundarfthe bold ling for the Laplace equation, where
®=0.

1 n

FIG. 5. The sticking probabilities in each of the circled sites of

the same aggregate for site-sticking conditions. The fi urgig' 2. TheY are computed by summ.ing over all of the bond§ that 90
also shows gt%atgthe boundary for ?he Laplace equatiogn igﬂto each sitddenoted by arrows unlike the case of bond-sticking

. . f . onditions, where contributions are summed over bonds that go out
obtained by coating the aggregate with a layer of cwcleaf)f each site

sites. This may cause two different aggregates to have the
same boundary for the Laplace equation, see Fig. 3. Conse-

set of growth probabilities and can therefore be considered a3
equivalent. Thus, from now on when we refer to an interface_

configuration, we relate to the shape of the boundary for th%_ p®/4, whereN,, is the number of bonds that connect the
Laplace equation. The probability to be in such a configura; ite to the aggregate. Thus the growth probability in each site

e . . is Np®/N, see Fig. 4. In Ref[14], we arrive at the same
tion is a sum over all the underlying aggregate configura-

tions. Another effect of the transition to the Laplace bound—reSUIt using the discrete Gauss theorem.

ary is the narrowing of fjords. The padding of the aggregate In site DLA, we must sum over bonds that leado the
YK i g ot - 1nep 9 ggreg Site, rather than out of it. The growth probability per site is
by circled sites causes all the fjords to be narrower by tw

; . herefor
sites. Thus, a random walker can only penetrate into aggre- eretore

gates that have branches that are at least three sites apart. 1
For both types of sticking conditions, the growth prob- Psitel M,N) = N > d(m',n), (2.3
ability in each site is evaluated as the average number of nn

random walkers that stick in that site per unit time, normal-Where Pe(M,N) is the total sticking probability at the pe-

ized by the total number of particles sticking during as'nglerimeter site fn.n), see Fig. 5. Unlike the case of bond-

gml?alsttglfﬁelgvtrz Sigg nslj?;te)é:rg rgg:jrgr?”:Isvi[;sgrsf?r?gét%ﬂ(:king conditions, where a single potential determines the
q 9 ) ticking probability in a particular site, now the potentials in

into the system, which is equal t =N/4. several different sites contribute. This difference gives the
uppermost tip of the aggregate an even greater advantage

en be a sum over all of its interface bonds,®/4

mA | : | : | relative to bond DLA, because a single-particle tip gathers
' d ! ! ' contributions from three sides in site DLA, whereas in bond
2 DLA the only contribution is from above. This comes in
addition to the screening property of the Laplace equation
1 0.29 (common to both types of sticking conditionsvhich causes
N the sticking probabilities at the lower parts of the interface to
0 0-13 0.131 0.16 decrease exponentially.
1 §§ §§§ B. Exact solutions forN=2,3
2 &&&\\&\\& The best way to expla|r] thel enumeration method is to
Lo i1 i3 igin show some sample calculations in detail. We present here the

two simplest cases, namel,=2 andN=3. In these cases,
FIG. 4. The growth probabilities for the aggregate shown in Fig.there_ is only a finite numbe_r of (;onflguratlons, SO It Is

1. The growth probability in each perimeter site is proportional toPOSSible to get an exact solution with no need for approxi-

the potentialb at that site and to the number of boridg leading ~ mations.

from the site into the aggregatéenoted by arrowse.g.,N,=3 for For N=2, the interface of the aggregate itself has an in-

the site at (1,2) andN,=1 for the site (0,2) right above it. finite number of possible configurations, because it has the
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1+ g2(1)z contributing site in ronm=1 and the evaluated site in row
1+ g:(0)z m=2. In this simple case, there is only one site with a non-
) ‘ o zero potential, namely$(1,0), which is yet unknown, and
"; ) i - which we denote by. The site (1,1) on its side is nearest
m

neighbor to the aggregate and therefore wedsgt,1)=0.
Thus, the potential of the sites in raw=2 only has a con-
tribution from x. More specifically,®(2,0)=1+g,(0)x be-
cause it is right abovg, and®(2,1)=1+g,(1)x because it
is removed by one site. The potentfh(2,0) does not con-

1 tribute to any growth process, but is important for solving for
i =2 X. The variablex is found using its Laplace equation,

x»

MM

FIG. 6. The two possible configurations fbhi=2. The circles 4x=1+g,(0)x,
denote the sites where a random walker might stick. Also shown are (2.5
the possible transitions between them, denoted by arrows, and the 2 \/§
relevant matrix elementg; ;. The distribution of the potentiab =X=—
over the lattice is demonstrated only for configuratier?, see text
for explanat.ion. The double arrow#,(:, and«) show the bonds . Growth in site (0,0) results in the flat configuration 1. It
of the possible access paths, which a random walker can take into

the circled sites. The bold double arrow shows the only bond goingﬁalnd c()jnlyb(?ccur Via one Il;)_on% fr|_o|m site (1,0), denoted by a
into site (0,0). The other three bonds lead into site (1,1). o ouble arrow {) in Fig. 6. Hence,

shape of a step whose heightan be any non-negative in- E, 2=f= ﬂzzo_l464, (2.6
teger[16]. However, in site DLA there are only two distinct © 2 4

statesj =0 andj>0. The casg¢ =0 refers to a flat interface,
i.e., the two columns have the same height, and a growtﬁ:

process will create a step wifl=1, with probability 1. For are three different bonds coming from two sites: there are

any step siz¢ >0, there are only two sites where a randomtwo bonds coming from (1,0) and an additional one coming

walker may stick: above the highest particle in the aggregat . ; :
or on its side; see Fig. 3. There is no possibility for the‘%‘rgirgn(zéi)' This upward growth results in the same configu-

random walker to penetrate into a fjordi\=2, because it is

=0.2929.

here the denominator comes from the normalization factor
=2. Growth can also occur in site (1,1). This time there

too narrow, and the particle would stick at its entrance. The 1 242
two configurations are indexed hiy=1 andi=2, respec- Ezo=Pu(2)= §[2x+ 1+g,(1)x]= " 0.8536.
tively, and are shown in Fig. 6.

We now begin building the evolution matrk by finding 2.7

the growth probabilities for each of the two configurations.  This concludes the calculation of all of the growth pro-
As mentioned, configuratioin=1 turns intoi =2 with prob-  cesses. The resulting evolution matrix is

ability 1, henceE, ;=0 andE,;=1. It is important to keep

track of the total upward growth probability for each con- 0 0.146
figuration, p,y(i), that corresponds to events in which a “11 08538 (2.9
newly stuck particle is higher than all of the particles in the
aggregate. In this cagg,(1)=1. We verify that the matrix is properly normalized by noting
In order to solve fori =2, we first have to compute the that the sum of the terms in each of its columns is equal to 1,
Green'’s function according to E@L.9), which gives ie.,
9,(0)=2—2=0.5858, 2
2.4 2‘,1 Eij=1 j=12. (2.9

0.(1)=+2-1=0.4142.

The general theorem mentioned in the Introduction ensures
the existence of a single eigenvector with an eigenvalue of 1,
or in other words, a fixed point vect®t* that satisfies

We check our calculations by verifying thgt(0)+g»,(1)
=1, as expected from Eq1.12. The potentialb near the
growth sites can be expressed in terms of the variable
=®(1,0) according to Eq(1.8), as shown in Fig. 6. We p* = EP* . (2.10
usually set the row containing the highest particle in the

aggregate as the reference row, with=0. Thus, the row The fact that the process is closed is manifested in(E§).
m=1 always contains the highest circled site that belongs td'he process is also irreducible because there is a finite prob-
the Laplace boundary. Each of the sites in rowe1 con-  ability to go from any initial state to any final state during a
tributes to the potentials in the sites in rome=2. The weight  finite number of time steps. The fact that there is a single
of the contribution is equal to the value of the Green’s func-fixed point implies that starting from any initial state, the
tion gn(n), wheren is the horizontal distance between the system will converge to the fixed point. This fixed point
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represents the asymptotic time probabilities for seeing either ] ololol Eyo
one of the two possible configurations. =1 S N
The eigenvalues are the roots of the characteristic polyno- NN Fy 1 Q
mial, L [o] |
E1,3 E\QE\ =2
)\O: 1, E2 3
3 [oLlo] ~
” \/E (2.1]) 1=3 :\\\\jm\& E3’2
N=— = —0.1464,

FIG. 7. The possible configurations and the possible transitions
) ] ) o between them foN=3.
and the normalized fixed-point vectBt* is given by

This means that a single time step is practically sufficient

w97 \/5_ to arrive at the steady state. All of these theoretical predic-
== ——=0.1277 y P
! 17 ' ' tions agree with results obtained from numeric simulations,
(2.12 up to the accuracy of the simulation, which is better than
12+ /8 10" °. This dynamics is actually exactly the same as the first-
*
2=—7 ~08723. order approximation of the frustrated climber model in Ref.

[14], except that the analysis of the temporal convergence is
The steady-state weights enable us to calculate the averagéittle bit more refined there.

upward growth probability, The solutiqn of thg casbl=3 _is also relatively simple,
because again there is only a finite number of growth con-
2 12+ /8 figurations. This is because the width of the widest possible

<pup>*zz P pup(i)=T=0.8723, (2.13  fjord is two sites, w.hich is still insufficient_for a random _
=1 walker to penetrate, i.e., a random walker sticks as soon as it
enters into a fjord. The three possible configurations are in-

which is connected to the mean density, dexed in Fig. 7. These are the same as the three configura-

\/— tions of the first-order approximation for bond DLA witth
p(2)= 1 _ 6-2 =0.5732. (2.14 =3 [14]. As in the example oN=2, we proceed to calcu-
2(pyp ™ 8 late the probabilities for every growth process in each of the

configurations. Once again, we first calculate the Green’s
It is also possible to calculate the rate of convergence téunction,
the steady state. In general, the rate of convergence is deter-

mined by the largest eigenvalue Bf other than 1. Suppose 6—+21
that at timet=0 the state of the system differs from the 93(0)=——3—=0.4725,
steady staté(0)+# P*. The difference vector (2.19
—P(0)— P* 1-gs(0) 21-3
v(0)=P(0)-P (2.19 05(1)=05(2) = ——=~——=0.2638,

belongs to the linear subspace of vectdts {v|=v;=0},

because botR(0) andP* are normalized probability vectors The first configurationj=1, grows with probability 1
and thus the sum of their components is equal to 1. Now, Ednto configurationi=2. Thus, E,;=1 and E; ;=E3;,=0,
(2.9) ensures thaV is an eigensubspace Bf and as such it and alsop,,(1)= 1. The potential diagram for=2 is shown
must contain at least one eigenvector. Since in this simplén Fig. 8. Because of symmetry it is possible to conclude that
case the space of configurations is only two-dimensionakp(1,0)=®(1,2)=x. The Laplace equation foris

thenV is one-dimensional, and(0) is necessarily an eigen-

vector with the eigenvalug = —0.1464. Aftert time steps 4x=x+1+[03(0)+gs(1)]x,
the state of the system is (2.20
9—y21
P(t)=E'P(0)=P* +\}v(0). (2.16 =X= g =0.4417.

Therefore, the deviation from the steady state decays expo-
nentially, The sticking probability at (0,0) i%/3, because there is a

single connecting bond, and because the normalization factor
P(t)—P* =\{v(0)=(—1)'e Y7v(0), (2.17  is 1/3 for this case. The resulting configuration 483, how-
ever a sticking event at (0,2) also leadsite3, so that
where E3,=4x=(9—/21)/15=0.2945. The other possibility is an
upward growth at (2,1), which results in the initial configu-
ration i=2. Thus, E;,=puy(2)=1—Ez,=(6+21)/15
=0.7055 andkE; ,=0.

T=

- m=0.5584. (2.18
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1 + 293(1).’13
|
141 —g3(1)]z

1=2

FIG. 8. A “potential diagram”: the potential®(m,n) of con-

figurationi=2, expressed in terms of the variatie

The potential diagram for=3 is shown in Fig. 9. The

Laplace equation is
4x=1+g3(0)x,

6—/21

5

(2.21

=X= =0.2835.

A sticking event in (0,1) leads to=1, thereforeE, ;=x/3.

PHYSICAL REVIEW E 63 046117

upward growths, which result in=2, i.e.,E; 3= p,(3)=1
—x/3=(9+/21)/15=0.9055. This completes the calcula-
tion of all the elements of the evolution matrix:

0 0 0094
E—|1 0.7055 0.9055. (2.22
0 02945 O

The normalized fixed point of the matrix is

p*=[0.0210, 0.7562, 0.2227 (2.23

This enables the computation of the average upward growth
probability and of the average density:

3
(Pup* :,Zl P* puy(j)=0.756 245,

(2.29

p= —0.440774.

3(Pup™

The second largest eigenvalue determines the characteristic
time constant of the exponential convergence to the steady
state,

—0.56. (2.25

— In[x4]

C. Approximations for N>3
The two examples of the previous sections, Nor 2 and

The other possible sticking events at (1,0) or (1,2) involveN= 3, are special because there is only a finite number of

1+ g3(1).’17
1+ g3(0)x

3
Y ot
(/_\

S
&

1 =3

FIG. 9. The potential diagram for configuratior 3.

possible configurations. The cae=4 is the narrowest cyl-
inder that can have a fjord that is three sites wide. Since this
fiord can be arbitrarily deep, there is an infinite number of
configurations. In spite of that, every configuration that has a
fiord that is more than one site deep is uniquely determined
by its depth, i.e., there is only one configuration witim

=2, a single configuration withm=3, and in general a
single configuration with a specifiam if Am=2. The
unigue configuration witlAm=2 is shown in Fig. 10, along
with the single configuration with a specifian that is larger
than 2. Other than that, there are four possible configurations
with Am=1, which are shown in Fig. 11, and finally the
trivial flat configuration withAm=0.

This case resembles bond DLA witki=2 [16], in the
sense that in both cases there is an infinite number of con-
figurations, but this infinity can be represented using a single
parameter. In Ref[16], this parameter is called “the step
size” and is denoted by, but actually it is the same asm.

The case of site DLA wittN=4 is a bit different, because
there are four configurations witAm=1 instead of one.
There is also a resemblance to the solution of the Laplace
equation for the two cases, because in both cases the Laplace
equation is solved on a single column with zero boundary
conditions on the sides. Thus, in both cases there is an ex-
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T going over all the possible configurations to some order, and
m calculating their set of growth probabilities. It is feasible to
perform this task manually when the number of configura-
Q Q tions is relatively small, but ad andO increase, the number
of configurations grows exponentially and it becomes im-
‘ “ d practical to do so. We use the same computer program that
\&\i\\\k\ was used for bond-sticking conditions, after making the nec-
I essary adjustments due to the site-sticking conditions.
(a) Manual calculations may still be important as test cases to
check the operation of the program.
f The program goes over all of the possible configurations
systematically. It starts with the trivial flat configuration
(Am=0), which is indexed by =1. This configuration has
O O only one possible growth process, which occurs with prob-
ability 1, that turns the interface into configuratige-2,
O Q which has a single bump. The program then continuep to
Lo =2 and analyzes its growth probabilities. Every growth pro-
o cess changes the shape of the boundary. Each time a particle
LI sticks in a certain site, the program has to identify the newly
O 1O formed configuration. In order to do so, it marks all of the
O nearest neighbors of the newly attached particle, because
\ S new particles may stick there. The new configuration is
&\& &\\&\ searched for in the existing list of configurations, which were
(b) n already analyzed by the program. If it does not exist, then it
is added at the end of the list. In either case, the program
FIG. 10. The only configurations for a cylinder of widt=4:  identifies the index of the resultant configuratiorNow, if
(@ Am=2, (b) Am>2. the index of the original configuration js then the growth
probability is stored in the matrix elemeht ;.
ponential decay of the potential inside the fjord, which is A configuration is characterized using the set of sites that
governed by the multiplicative facter “*=2— /3. This en-  are connected to infinity because these are the sites that are
ables us to treat the current case in an analogous way to tfggcessible to the random walker. Of course, any site that is
previous one. This could have given us analytic expression8igher than the highest site on the boundary is connected to
for the Markovian matrixE;;, i,j=12,..., for the infinity. Hence, it is sufficient to specify only the set of sites
steady-state vectd?? , i:1,2', ... and for the distribu- that are not_ higher than the highest boundary @fie region _
tion of gaps inside the aggregate. However, we omit the pre?<1)- A single growth process may cause a whole region
sentation of this calculation because it is not the main inter®f Sites to disconnect from infinity, for instance by sealing
est of this work, and so we treat the cas&of 4 in the same off an entrance to a fjord. This means that it is not sufficient
way asN>4. to mark the nearest neighbors of a newly attached particle,

ForN>4, the boundary may be complex, and it cannot bebut that it is necessary to recheck the complete set of sites

easily characterized because the width of a fjord can quctut—hat are connected_ to infinity. We perform this by an algo-
hm that marks this set recursively.

ate and overhangs may appear. We therefore use the appro¥t ;
g Y app PP Special care has to be taken for upward growth processes,

mation scheme described in the Introduction, which was als% h his h
used for bond DLA14]. The calculation procedure involves 2€cause they may causem to exceedO. In case this hap-
pens, the bottom row of the configuration is truncated. Fi-

1 nally, symmetry has to be taken into account. Rotations
’f D ”1"” oo ] around the axis of the cylinder and reflections about any
o NOID o MY vertical axis do not change the growth probabilities or the
- Ay - AN steady-state weights, so the set of all of the symmetric con-

0123™" n figurations is represented by a single canonical choice. More
i=2 specifically, a configuration is represented by a binary word
m m that consists oNX O digits that correspond to the sites; the
e 1 empty sites that are on the exterior are given a value of 1,
o NWN\OJO o N\ and the rest of the sites are assigned with zeros. We choose
-1 A S\ the canonical form as the word that has the maximal numeri-
0123 " 0123 " cal value.
i=4 i=5

After the complete list of configurations is processed, the
FIG. 11. The four possible configurations fbr=4 with Am calculation of the evolution matrix is completed, and it is

=1. These configurations are indexed betweer? andi=5, and  closed, i.e.¥;E; ;=1 for everyj. Then the steady-state vec-

the flat configuration wittAm=0 is indexed byi =1. tor P* is calculated iteratively by applying the evolution ma-
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TABLE I. The approximated densitigg. and the number of configuratiol, for various order® and
cylinder widthsN. The approximated densities from enumeration are compared to simulation results. In
addition, the extrapolated densijpyN,O— ) is also presented.

N\O  Simulation O—x 1 2 3 4 5 6 7 8
2 0.5732 0.5732
2
3 0.4408 0.4408
3
4 0.3744 0.3744 0.3743 0.3750 0.3744 0.3744 0.3744 0.3744
5 6 7 8 9 10
5 0.3334 0.3334 0.3323 0.3355 0.3336 0.3334 0.3334 0.3334 0.3334
7 10 14 24 52 134 378
6 0.3049 0.3049 0.3025 0.3094 0.3057 0.3050 0.3049 0.3049 0.3049 0.3049
12 21 35 94 395 1970 10344 55161
7 0.2837 0.2837 0.2798 0.2908 0.2857 0.2840 0.2837 0.2837 0.2837
17 38 76 280 1831 13575 98479
8 0.2671 0.2671 0.2616 0.2767 0.2707 0.2679 0.2672 0.2671
29 81 190 846 7605 83043
9 0.2536 0.2537 0.2467 0.2655 0.2593 0.2551 0.2540
45 161 451 2421 29220
10 0.2424 0.2426 0.2341 0.2562 0.2503 0.2450 0.2431
77 349 1152 7213 111067
11 0.2329 0.2233 0.2483 0.2431 0.2368
125 733 2885 21688
12 0.2247 0.2139 0.2415 0.2371 0.2300

223 1627 7504 67450

trix many times on some initial-state vector. This method istion for N=9,10 by extrapolatingD— . The extrapolation
much faster than any of the standard techniques for solving does not improve the accuracy of the cabkes11,12 to a
set of linear equations, especially when the number of varisatisfactory level. Our aim is to deduce the valuep¢N)
ables is very large. The next step is to calculate the averagelim_ _p.(N,O) from the limited range of available val-

upward growth probability, according to E(L.4), and the ;o5 for 0. We start by noting that our data practically
average density, according to EQ.5. Our cc_Jmputer '®"  reached asymptotia fod=4,5,6. We detect that the differ-
sources enabled us to conduct the enumeration only up toéhces,o (O.N)— po(O+1N), decay exponentially and thus
finite orderO,. that depends oN. As explained above, for concludce tr'1at thec functilorﬁ’z IN[p(N.O)/p(N)—1] is very

N=2 andN=3 there exists a finite number of configura- q|5qe 1o being linear. Substituting the parametrizatiens

tions, and higher-order approximations are irrelevant. One o/
' ? = N, we are able to extract the three unknowns—8,
may be surprised that we are able to re&xh 8 for N=6, “«

. B and p(N)—using at least three data points. Rér=6 and
but we do not reach such a high order fb=4 andN=5, 0=4, 5, and 6, we find tha8=0.03 anda=12.31. The

because there are definitely fewer configurations in the same, e ofp(6) turns out to be very close to the highest avail-
order of approximation for loweN'’s. The reason for this is able approximatiom,(6,8)
c\ % 0OJ-

that very.good convergence Is achieved. alreadylerN, so Scaling theory would imply that, for larghl and O, f
V\f[e ha?OI'Elﬁlfzg?m IE)ly_%omgdtﬁ in;c_rll_rt"ghﬁr olrdterds,dand'weshould become a universal function, which depends only on
stop atu= OriN=4 and=>. The calculaled densl- o sealed ratic=O/N (without an additional dependence

ties pe(N,O) are presented in Table I, together with the on N). Following this expectation, we thus conjecture the
number of configuration®\N.. The table also presents the general relation

extrapolation and simulation results.

pc(N,0)=p(N)[1+e'OM], (2.29
D. The extrapolation of the order of approximation
to infinity, O—»ee with f(x)=—12.% for N,O>1.
Very good accuracyabout 10%) is also obtained foN To test this conjecture, we estimatg(N) for N=4 via
=8, even thougtD,,,,=N—2=6. However, forN=9 the
results are not very accurate, because the maximal available (N,Opa)
order is onlyO=5 for N=9,10 andO=4 for N=11,12. In p(N)= L Shihet (2.27)
spite of that, we are able to arrive at a more precise estima- 1+ ef(Cmaxd/N)
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errors Ap/p rather than the errors in the densitidp, be-
cause we find them to be more uniformly distributed. The
results of the fit using the six data points with=Bi<10
yield D=1.74+0.06, In@)=—-1.0+0.3, B=1.5+0.6, and
#=0.80+0.13. The error estimates are evaluated using a
confidence level of 0.95. Since the fit yields a value for
that is close to 1, we also try a three-parameter fit, fixihg
=1. Using the three rightmost data points fé~=8, 9, and

10 givesD=1.68, In@)=—0.799, andB=1.16. Using more
points with 5<N=<10, we get

FoOo0ONOO S

o

p.(N,OJp(N)-1

D=1.68+0.01,
0'r In(A)= —0.784* 0.016, (2.29
2.2 013 Of4 015 0:6 Oj7 018 019 ‘; 111 112 1j3 1:4 1j5 16 B=112‘_“005
O/N
FIG. 12. Data collapse &8 =[ po(N,0)/p(N)— 1] vs O/N for Finally, an alternative four-parameter form, including

all the data points with #N<10 andO>2, on a semilogarithmic  ONly “analytic” corrections, is
scale. The continuous line shows the linear approximation
=—12.30/N.

pa(N)=ANP~d . (2.30

+ +
I J— _—

for O<Opa. The resulting values are shown in Fig. 12, This time the results for ZN<10 are D=1.65, In@)

together with the linef(x) = —12.X. Clearly, all the values —=_g 68, B=0.55, andC=1.10, and the least mean-square
for O/N=0.4 are consistent with our conjectured form for cajculation for 5<N<10 vyields D=1.70+0.02, In@)
f(x). . =-0.87+0.08, B=1.5+0.4, andC= —0.5+0.4.

The values ofp(N), as deduced using Eq2.27), are We thus conclude that the fractal dimension of cylindrical

listed in Table I. Clearly, they all agree with the values from DLAis D=1.68*+ 0.01, close to the results of earlier numeri-
the simulations, except for small deviations that appear foga| work [6].

N=9 and 10. In the casdd=11,12 the deviations are rela-
tively large, becaus®,,,, is too small, and hence the ex-

. " Ill. SIMULATION
trapolation results are not specified.

As mentioned, our analytical enumeration results are con-
E. An enumeration-based estimate of the fractal dimensio® firmed by simulations. In this section, we describe how our

. . . _simulations were conducted, paying special attention to the
In the preceding section, we obtain very accurate esti

i t th tofi o teadv-state densi boundary Green’s functiogy(n), which is given a new
mates of the asymptotid)— ) average steady-state densi- ;. opijistic meaning. We also discuss the accuracy of the

ties p(N). In this section, we extrapolate the latter denSitieSresults, and finally, we try to fit the results to some approxi-

in the limit N—>c in order to find the fractal dimensioD.  majions as in the end of the preceding section and obtain
Consider anN" segment in the steady-state regime ofg,me more estimates of the fractal dimension.

growth. Assuming that the structure is a self-similar fractal, o simulation is performed on a lattice, which is repre-

which has no characteristic length scale other thawe  qonteq by a 2D array variable. Each of the variables in the
expect that the average mass of the segment would be prgz oy can assume one of two possible values, 1 or 0, that

. D . .
portlgggl toN”, and that the density would be proportional yetarmine whether the relevant site is occupied by an aggre-
to N°~9. In principle, however, one expects some correc-

; | X X - gate particle or not, respectively. The size of the array is
tions to scaling as in E_c{1.§). Taking only the first correc- (14N)XN, i.e., its width isN and it is composed of 14
tion term of that equation into account, we get an approXiycks of Nx N sites stacked one on top of the other. The
mation that depends on the four parame@rs\, B, and6:  ,\mper 14 is quite arbitrary and could be chosen differently.
B In principle, the lattice should be tall enough to allow the
1+ _) (2.29 aggregate to arrive at a steady state, and also to allow a
N? margin at the top, because the average density of the aggre-
gate is lower near the growing front. Each time a new cluster
where the subscrip denotes that this is an approximation. is initialized, the lattice array is cleared so that all of its
Using the four data points with<N=<10, a fit to Eq.(2.28  variables are set to 0, except for the bottom row, which is set
yields D=1.64, Ind)=-0.63, B=1.31, andf=1.48. The to 1. This means that the initial shape of the aggregate is a
calculation of the parameters can also be based on more th&orizontal line at the bottom of the lattice. A random walker
the minimal four points, using a least mean-square errois characterized by the coordinates,() of its position. In
method. We choose to minimize the logarithrfae relative each simulation step, a direction is chosen randomly and the

pa(N)=ANP~¢
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mh . . . initial site (m,n) in the inactive zonera>1), then it will
.+ + i Inactive cross the line for the first time an(=1,n"). In the next

3 zone time step, the random walker moves to one of its nearest

, m>1 neighbors with equal probability. Therefor&(m,n;n’")

must be equal to the average ¥f on all the nearest neigh-

1 O Active bors. This_ implies thatV satisfies the Laplace equatidim
§ the coordinatesn andn),

0<>§§C>%§ s?l V2¥(m,n;n")=0. (3.9

gl B @

2 N \§§§\ \ The boundary conditions fo¥ at the lower boundary are
P01 ataligainm 1, n=n’
. o Y(m=1n;n")= . (3.2
FIG. 13. The bold line separates between the upper inactive 0 otherwise.
zone withm>1 and the lower zone witm=<1. A random walker
cannot stick in the inactive zone. This is true because if the random walker is already in the

row m’'=1, then it already passed the line betwean 1

particle is advanced in that direction. If the particle happen&ndm=2 and so it stops before it starts. The boundary con-
to go into a site that is nearest neighbor to the aggregate, th&fitions at the top areV’ =const, or equivalently,

it sticks, i.e., the value of the relevant lattice variable is up-

dated from 0 to 1. Then the next random walker is released, ov

and so on. r:]linoc %:o_ (3.3

These are the exact same conditions satisfied by the Green’s
o function[16], and so the theorem about the uniqueness of the
In principle, each new random walker should be releasedo|ytion of the Laplace equation with the boundary condition

far above the aggregate, near the upper distant boundary. fxsures tha¥ is equal to the Green function, and especially
practice, nothing can happen to the random walkesannot 4t the first row above the line=1,

stick) until it crosses the bold line in Fig. 13. This line is
drawn between the highest row where a random walker can
stick (m=1) and the row above itnj=2), and thus it dif-
ferentiates between the active zone below the line, with
<1, and the inactive zone above it, with>1. The projec-
tion of the path of the random walker on the vertical aiis

m coordinate is also a random walk, only in one dimension
(1D). Usually in 1D there is a probability of 1/2 to go up and

thebsat:qg pr]?b}':\blllty to.go .dr?wnd,.but nour (cj:ase, t?)er;:_llls Ei‘)olicy saves a lot of simulation time in comparison with the
p][o ability of 1/4 tho go In either |rect|or:1,|an ahPro ability aternative option of letting the random walker wander freely
of 1/2 to stay at the same row. Nevertheless, this motion i3l it finally sticks, or until it passes some arbitrary critical

still equivalent to a random walk, however the effective time yiciance from the aggregate. We note in passing that the
step is longer. A quality of 1D random walks is that there isdiscussion in this section proves Ha.12 in an alternative,

a probability of 1 to arrive at any sitgio matter how far opapilistic approach, simply due to the fact thatn) is a
within a finite time. Therefore, there is a probability 1 that probability function.

eventually the random walker would cross the line from the
inactive zone into the active zone. The random walker is
equally likely to cross this line at any of thd sites, so
instead of waiting for a long time, it is more efficient to start  Figure 14 shows an example of a typicinsity profile
the simulation by inserting the random walker in a randomwhich is the average density as a function of height. Only the
site just below the line in the active zoh&8]. middle section of the aggregate is taken into account in mea-
But what happens if the path of the random walker hap-suring the average steady-state deng(t\). Our impression
pens to cross the line into the inactive zone? Once more wis that a margin o sites from each side is enough, but we
apply the same reasoning and claim that ultimately the ranwork with margins of N. A possible way of estimating the
dom walker would recross the line downwards at some poinaccuracy of this average is by taking the standard deviation
with probability 1. Unlike the initial insertion, this time the and normalizing by the square root of the number of rows
distribution of the reentry point is not uniform. It is quite that participate in the averaging. This is somewhat optimis-
easy to see, for example, that there is a greater chance for thie, however, and would produce very low error estimates,
particle to reenter at the exact same site from which it exitedecause this calculation assumes statistical independence be-
than for it to reenter at a site that is far away. Let us denotéween adjacent rows, where in fact there are significant cor-
by ¥(m,n;n") the probability that if the particle is at some relations. The right factor to normalize by is therefore the

A. The role of the Green’s function

P (1,n;n")=gn(n—n"). (3.9

This means that each time the random walker attempts to
cross the line to the inactive zone, it can be returned to the
active zone immediately. The distance of the reentry point
from the exit point should be chosen randomly from the
distribution defined by the Green's functiagy(n). This

B. Analyzing the statistics
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FIG. 14. The density profile as a function of height for a lattice
with N=10 averaged over sonm¢~2x 10’ iterations. The height
of the lattice is 140 sites.

FIG. 15. A plot ofp(N) vs N on log-log scales. The plus signs
denote the simulation results, the dashed line denetéN), the
best fit to the three-parameter approximation of &328), with 6
=1. The circles denote the enumeration results.
square root of the effective number of independent rows.

Since the aggregate is fractal, the only available length scale D=1.671+0.001,

is N, and therefore the correlation lengirshould be propor-

tional toN. We therefore conservatively guess that two rows In(A)=—0.762+0.003, (3.9
that areN rows apart are independent, and hence we estimate

the accuracy by the standard deviation divided\d0, be- B=1.071*+0.015.

cause there are 10 blocks NfX N is the steady-state region

in our simulations. This error estimate is expected to havd he resulting error estimates seem a bit too optimistic, per-
the correct dependence on the numbeNofN blocks, but ~ haps also because of the presence of some systematic errors
there could be some numerical factor missing. that are not taken into account. The simulation results are

An alternative way of measuring(N) is by measuring shown in Fig. 15 on log-log scales as plus signs, along with
(pup* directly and using Eq(1.5. After the aggregate the latter three-parameter fit, shown as a dashed line. The
reaches a height of 2, we assume that it is in the steady figure also shows the enumeration results as circles. Since
state and we start gathering statistics. In particular, we courifie differences are hardly noticeable, we display the relative
the number of upward growth events, when the randontlogarithmig residuals v;=[p(N;) = pa(N;)1/p(N;) sepa-
walker sticks above all the particles in the aggregate. Oufately in Fig. 16 on semilogarithmic scales, in comparison
results show very good correspondence between the two difvith the relative error estimates o; . The maximal relative
ferent methods; the typical relative difference is on the ordefesidual is 1.% 10" *. This is consistent with the order of
of 1076, magnitude of the estimatea priori errors.

The simulations were carried out for the following values A factor that indicates the compatibility between tae
of N: 2,3,...,12, 16, 24, 32, 48, 64, 96, and 128. We did priori error estimatesr; and thea posterioriresidualsy; is
not go beyond that because our computer resources did not
suffice to iterate a large enough number of clusters to obtain 2_ i
a relative accuracy of about 16 or better, as obtained for X Ng 5
the other cases.

We now proceed to fit the results for the 10 available datavhereNy, the number of degrees of freedom, is equal to the
points with 128 N=10 in a similar way to Sec. Il E. The number of data points minus the number of unknown param-
difference is that now we use the error estimateso give  eters. The value of? should be close to 1. In the latter fit,
weights to the different data points, because not all the acwe gety?=0.9, whereas we get?=0.3 in the former. The
curacies are the same. This way the fit will allow greaterresults of the fit imply that the three-parameter approxima-
residuals for data points with larger error estimates. Our firstion is sound.
attempt is to fit the four-parameter approximation of Eq. For the sake of comparison, we also try to fit to the other
(2.28. The results areD=1.673+0.002, In@)=—0.770 test approximations that were introduced in the preceding
+0.0013,B=1.03+0.06, andd=0.96+0.06. The maximal section. The best fit to the four-parameter approximation in
relative residual is 1.2 10 4. Once more we sef=1 and Eg. (2.30 is D=1.6721+0.0012, InA)=—0.766+0.006,
perform the fit for the remaining three parameters. The reB=1.12+0.07, andC= —0.28+0.4. In this approximation,
sults are the residuals are not lowered drastically; the maximal rela-

Uj 2
—) : (3.6

gj
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wide cylinders. We note that in order to obtain the same
v relative accuracy, it is necessary to BeN, e.g., in order
18- v . to obtain a relative accuracy better than @ne should use
* + + at leastO=N-—1. This is the case foN<7, where the re-
ey v . sults are very accurate, but not so fox=8, where our avail-
M able computer resources allowed only lower-order computa-
o5 + ] tions. As discussed in Sec. Il D, we are able to improve the
& estimates in these cases by extrapolatihg , taking ad-
2— o . 7 vantage of the universal exponential decaydiN,O)/p(N)
* with the scaled variabl®/N. Table | also compares the
enumeration estimates with direct measurements from simu-
LAt N lations, and finds them to agree within the simulation errors.
Once accurate estimates are obtained @) for N=<10,
a a a & they are fitted to a power-law approximation with a correc-
R tion to a scaling term according to E.28. The fit (with
2 - #=1) gives an estimate of the fractal dimensibn=1.68
N 1 +0.01.
Besides the range 2N=10, simulations are also per-
FIG. 16. The relative residuals=(p—p,)/p (the plus signsvs ~ formed on cylinders with largeN’s in the range 1&N
N on semilogarithmic scales. The upper and lower triangles shows<128. The relative errors of the measurementg @) are
the estimated confidence intervdksrrorg of the simulation data, estimated around 1I0¢. The simulation data are also fitted to
*o. the same approximations. Once again, the three-parameter
approximation proves most appropriate and the resulting
tive residual is 1.X 10™* and x*=0.2. The error estimate of fractal dimension this time i® = 1.671:-0.001. The fact that
the fourth paramete€ is much greater than the error esti- the enumeration and simulation-based estimates of the fractal
mates of the other parameters. The contribution of the terrdimension are very close is a good indication of their accu-
with the C parameter is on the same order of magnitude agacy.
the residuals, at least for the data points with laXge This The last statement should be taken with some caution in
implies that there may be significant contributions from thelight of evidence that raises doubts concerning self-similarity
noise(the errors, and therefore its inclusion is redundant. in radial DLA [19—21], or suggesting some very slow cross-
overs [22,23. Indeed, radial DLA is somewhat different
IV. SUMMARY from cylindrical DLA, as m:_;mifested by the difft_arence be-
tween their fractal dimensiond=1.71 for radial DLA
In this paper, we continue our endeavor to solve cylindri-[24,25 andD =1.66 for cylindrical DLA (this difference is
cal DLA analytically, i.e., to calculate the steady-state averstill not fully understoodl
age densityp as a function of the cylinder widtN, and to We also tried performing the exact calculations fér
find the fractal dimensiorD. Unlike our previous work, =11 and 12, but managed to go only up@q,,,=4. This
which deals with bond-sticking conditiorjd4], this work  was insufficient for extrapolation with an accuracy that is
solves for site-sticking conditions. The immediate problemcomparable to the rest of the data points. With the aid of
in following our Markovian method is that, except fdf  stronger computers, we think that it would be possible and
=2,3, there is usually an infinite number of configurations.beneficial to compute a few more data poip{dN), which
The caseN=4 has an infinite number of configurations, but would help to obtain more accurate estimates of the fractal
is still relatively simple. The large variety of possible com- dimension. Also, the techniques discussed here could be
plex interface shapes fod=5 prevents the inclusion of all used to find the fractal dimension of cylindrical DLA in 3D.
the configurations and compels the use of an approximatiorlowever, since a much larger number of configurations can
scheme, in which only a finite number of rov® of the  be expected, this task would also probably require the aid of
growing front near the tip are included. This approximationa very strong computer.
works because of the exponential decay of the Laplace po- There are a few differences between site DLA and bond
tential ® inside deep fjords. The approximation leaves a fi-DLA. The boundary conditions for the Laplace equation are
nite number of configurations to work with, and thus thea little bit different; in bond DLA, the potential is set to zero
computational procedure can be completed. on the aggregate itself, whereas in site DLA, the potential is
We find that this is a well-controlled approximation, in set to zero on sites that are nearest neighbors of the aggre
the sense that any desired numerical accuracy can lgate. Also, the growth probabilities are computed somewhat
achieved provided that a high enough order of approximationlifferently: in bond DLA, contributions are summed over
O is used. The results are summarized in Table |, whichbonds that go out of a site where sticking may occur,
shows the computed densjby for various values oN andO  whereas they are summed over bonds that go into it in site
along with the number of relevant configuratioNg. An DLA. The normalization factor, however, is equal to the
evident fact is thalN. grows very rapidly as a function @  width N in both cases. In the case of site-sticking conditions,
and N, making it impractical to perform the calculation for there is an effective thickening of branches and thus a nar-
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rowing of fjords. Thus, there is a notable decrease in thaecessary. The estimate of the fractal dimension for site
probability of a random walker to penetrate deep into fjordsDLA, D=1.68, is to be compared with the bond-DLA enu-
This also causes the number of configurations for a particulameration resulD=1.64[14]. In contrast, the difference in
choice ofN and O to be considerably less for site DLA in the simulation results for the two cases is small2e: 1.67
comparison with bond DLA. Therefore, accurate enumerafor site DLA andD =1.66 for bond DLA. Given the uncer-
tion results can be obtained for largdis and O’s in site  tainties, our results are consistent with universality with re-
DLA. The extrapolationrO—oc performed in this paper was spect to the sticking conditiorj45,6].

not done in Ref[14], which deals with bond DLA, because
the technique was not developed at that time. When we apply
the method to the bond-DLA case, we manage to improve
the relative accuracy of the highest available approximations, We thank Peter Jones, Brooks Harris, Yonathan Shapir,
pc(N,Ona(N)) for N=6,7, by an order of magnitude: from Torstein Jesang, Barbara Drossel, and Leonid Levitov for
about 1.2 10 3 to 2x 10 * for N=6 and from 5<10"?to  helpful discussions. We also thank Yiftah Navot for helping
1.6x 10 2 for N=7. This extrapolation is based on the datawith the computer program by suggesting more efficient data
points forN=5. The relative accuracy @f.(N,O.{N)) for  structures and algorithms. This work was supported by a
N=<5 is better than 10* and hence the extrapolation is not grant from the German-Israeli Foundatic@IF).
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