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Diffusion-limited aggregation as a Markovian process: Site-sticking conditions
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Cylindrical lattice diffusion-limited aggregation, with a narrow widthN, is solved for site-sticking condi-
tions using a Markovian matrix method~which was previously developed for the bond-sticking case!. This
matrix contains the probabilities that the front moves from one configuration to another at each growth step,
calculated exactly by solving the Laplace equation and using the proper normalization. The method is applied
for a series of approximations, which include only a finite number of rows near the front. The fractal dimen-
sionality of the aggregate is extrapolated to a value near 1.68.
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I. INTRODUCTION

Diffusion-limited aggregation~DLA ! @1# has been the
subject of extensive study since it was first introduced. T
model exhibits a growth process that produces highly ra
fied self-similar patterns, which are believed to be fract
@2#. It seems that DLA captures the essential mechanism
many natural growth processes, such as viscous finge
@3#, dielectric breakdown@4,5#, etc. In spite of the apparen
simplicity of the model, an analytic solution is still unava
able. Particularly, the exact value of the fractal dimension
not known. Some of the analytic approaches employed so
include the fixed-scale transformation~FST! @6#, real-space
renormalization group~RSRG! @7–9#, and conformal map-
ping @10–13#.

In DLA there is a seed cluster of particles fixed som
where. A particle is released at a distance from the clus
and performs a random walk until it attempts to penetrate
fixed cluster, in which case it sticks. Then the next particle
released, and so on. There are two common types of stic
conditions. The sticking condition described above is cal
‘‘bond DLA,’’ because it occurs when the random walk
attempts to cross a perimeter bond between an unoccu
site and the aggregate. In an earlier paper@14#, we solved the
bond-DLA problem using a Markovian process. Here we
ply similar methods to the ‘‘site-DLA’’ case, where stickin
occurs as soon as the random walker arrives at a site tha
nearest neighbor to the aggregate. Since it is believed tha
large-scale structure of DLA is not sensitive to the type
sticking conditions used@15,6#, one expects both problems t
yield the same asymptotic fractal structures.

DLA can be grown in various geometries. In this pap
we deal with the cylindrical geometry in two dimensio
~2D!, where the particles are emitted from a distant horiz
tal line at the top, while the seed cluster is a parallel line
the bottom, with periodic boundary conditions on the sid
We only consider relatively narrow cylinders, with width
ranging fromN52 to N510. Even though the analysis i
this paper is solely 2D, the same techniques can be applie
higher dimensions.

An exact solution of bond DLA withN52 was published
in 1998 @16#. A generalization of the same approach w
used in order to solve slightly wider cases withN between 3
1063-651X/2001/63~4!/046117~15!/$20.00 63 0461
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and 7 @14#. The solution presented in the latter case is n
exact, but still, it presents a well-controlled series of appro
mations in the sense that any desired numerical accu
could be obtained, provided that a sufficiently high order
approximation is used. The difficulty with performing
high-order calculation is that its complexity grows expone
tially.

The main idea in these references and in this paper i
follow the dynamics of the growing front. The shape of t
interface determines the unique solution to the Laplace eq
tion that determines the growth probabilities. The struct
of the aggregate behind the interface is irrelevant and s
the history that led to the current interface. Each grow
process changes the interface. We can therefore des
DLA as a Markovian flow in the space of interface config
rations. The Markov states are the possible shapes of
interface, which are indexed by an integer, usually deno
by i or j. Pi(t11), the probability that the interface is i
statei at timet11, depends only on the state of the interfa
at timet. The conditional transition probabilities from statej
to statei make up the evolution matrixEi , j , which is time-
independent. Thus, the dynamics of the Markov chain is
scribed by the Master equations,

Pi~ t11!5(
j

Ei , j Pj~ t !, i 51,2, . . . . ~1.1!

Each matrix elementEi , j corresponds to a particular growt
process, and the sum ofj runs over all the interface configu
rations ~whose number may be infinite!. In order to fully
describe the dynamics, it is necessary to calculate the p
abilities of all the possible growth processes, for each of
possible initial configurations of the interface. We calcula
the growth probabilities by solving the discrete Lapla
equation on a lattice for a functionF, which corresponds to
the average density of random walkers,

¹2F50. ~1.2!

In the dielectric breakdown model~DBM! @4,5#, F has an
electrostatic meaning, so it is also commonly referred to
the ‘‘potential.’’
©2001 The American Physical Society17-1
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Usually, the equation set~1.1! is infinite because the num
ber of possible shapes the interface may assume is unlim
This may pose a problem for two reasons. For one, i
difficult to include all of the possibilities systematically. Th
case of bond DLA withN52 is a counterexample, where th
complete set of possible configurations can be easily cha
terized using a single parameter. This is because the inter
has the shape of a step whose heightj can be any non-
negative integer@16#. For N.2, however, it is very difficult
to parametrize the shape of the interface, even with the us
more than one parameter, because complex overhangs
occur @14#. The second problem is that even if it were po
sible to account for a complete infinite set of configuratio
it would still be awkward to analyze the Markov proces
e.g., finding its fixed point. Instead of accounting for all t
configurations, we make an approximation by employ
some consistent truncation scheme on the list of config
tions. In theOth-order approximation we include only th
top O rows of a configuration and truncate the rest; the list
configurations is sorted according to the maximal height
ference,Dm, between the lowest and highest particles on
interface@14#. In the Oth-order approximation, only a finite
set of configurations withDm<O is taken into account. The
configurations withDm.O are truncated so that only the
top O rows are taken into account~below theOth row all the
sites are considered to be occupied!. This truncation does no
have a noticeable effect on the upward growth probabi
~the growth probability at the tip!, because of the exponentia
decay of the potential inside deep fjords. Because of
exponential decay, the approximation converges very fas
a function ofO. Unfortunately, the number of configuration
diverges exponentially withO, so that the calculation can b
carried out only for relatively low order~depending on the
width N and on the strength of the computer!.

In the case of site DLA, the situation is a bit simpler th
in bond DLA, because it is generally harder for the rand
walker to penetrate deep into a fjord. A particle will only b
able to enter fjords that are at least three sites wide, unl
the case of bond DLA, where a particle can go into a sing
column fjord. This makes the solution of site DLA withN
52 andN53 much simpler, because they both have onl
finite number of interface configurations. The narrowest c
inder that can have an arbitrarily deep fjord~a configuration
with an arbitrarily largeDm) arises forN54, and thus there
is an infinite number of configurations. However, there c
be no fluctuations in the width of the fjord, so in this sen
this case resembles theN52 case in bond DLA. ForN.4,
the approximation method must be used, but generally,
the sameN andO the number of configurations in site DLA
is much smaller than in bond DLA, so it is possible to pe
form higher-order calculations for wider cylinders.

Once an order of approximationO is chosen, there is only
a finite number of configurations,Nc(N,O), which depends
both onN and onO. The Markov process is then closed a
irreducible. Closed means that( i 51

Nc Ei , j51 for j
51, . . . ,Nc , and irreducible means that there is a fin
probability to go from any initial statej to any final statei
during a finite number of time steps. A basic theorem
04611
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Markov theory states that a closed and irreducible proc
necessarily has a single fixed point@17#. This fixed point
represents the steady-state probabilities for the various in
face configurations in the asymptotic time limit. The theore
is also true for an infinite number of states, so one can c
clude that the unapproximated process also converges
steady state. As mentioned, this steady state is character
for example, by a time-independent average densityr.

The fixed-point equations are

Pi* 5(
j

Ei , j Pj* , i 51,2, . . . . ~1.3!

This means thatP* is the normalized eigenvector of th
evolution matrixE with an eigenvalue of 1. Once the stead
stateP* is calculated, it is possible to evaluate the stea
state average upward growth probability,

^pup&* 5(
j 51

Nc

Pj* pup~ j !, ~1.4!

wherepup( j ) is the total upward growth probability for con
figuration j. The average steady-state density of the agg
gate is then given by

r~N!5
1

N^pup&*
. ~1.5!

Here, the density is written explicitly as a function ofN. By
r(N) we denote the true value of the density, in the lim
O→`. We denote the result of theOth-order approximation
by rc(N,O).

As mentioned, the number of configurations grows exp
nentially withO andN, so it becomes unfeasible to make th
calculation for high values ofO andN. We perform calcula-
tions for N<10. The calculated densities and the number
configurations are presented in Sec. II. We find that in or
to obtain a relative accuracy of about 1024, it is necessary to
go up toO5N22 or O5N21. This is achieved forN<8,
but for N59,10 it is too heavy a task for our computer r
sources. In spite of this, we are able to successfully extra
late O to infinity for N59 andN510. The calculated den
sities are compared to direct measurements from cylindr
site-DLA simulations, and are found to be the same up to
accuracy of the simulation, which is about 0.01% or bett

The fractal dimensionD is extracted from the assumptio
that r(N)}N2(d2D), where d52 is the Euclidean dimen
sion. In general, one should also expect some correction
scaling, especially for lowN’s, i.e.,

r~N!5AN2(d2D)~11B/Nu1••• !, ~1.6!

whereA andB are some constants,u represents the leadin
correction exponent, and the dots stand for a series of hig
powers of 1/N. This scaling hypothesis is validated by bo
the analytic enumeration computation and by the simu
tions, which were conducted up toN5128. The best fit of
such a model to the enumeration data results in an estim
of the fractal dimension of cylindrical DLA in 2D,D
7-2
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DIFFUSION-LIMITED AGGREGATION AS A . . . PHYSICAL REVIEW E63 046117
51.6860.01. The same fit is also performed with the sim
lation data, yieldingD51.67160.001. This is to be com
pared with the valueD'1.66 often found in the literature
@6#.

The differences between bond DLA and site DLA a
manifested in the boundary conditions for the Laplace eq
tion, and in the way the growth probabilities are extrac
from the potentialF. The boundary conditions at the top a

lim
m→`

]F~m,n!

]m
51, n50, . . . ,N21, ~1.7!

wherem̂ is the vertical direction~the growth direction! andn̂
denotes the periodic lateral direction. This describes a
form flux of incoming particles. In the original DBM paper
@4,5#, a uniform potential is used instead of a uniform gra
ent, but if the distant boundary is very far, then the diffe
ences between the solutions for the two cases are expo
tially small @16#. The determination of the boundar
conditions on the aggregate should be done with care. In
case of bond DLA, the potential is set to 0 on the aggreg
itself, while in site DLA the potential should be set to 0 o
nearest-neighbor sites, i.e., on sites where growth might
cur. Also, the derivation of the growth probabilities from th
potential in site DLA is done a bit differently than in bon
DLA, as explained in the next section.

The Laplace equation with these boundary conditions
be solved exactly@16,14#. The idea is to divide the plane~or
space in higher dimensions! into two parts. The upper part i
an empty semi-infinite rectangle that begins at the row of
highest site on the lower boundary and continues upwardad
infinitum. The lower part contains the aggregate and exte
from the highest row downwards. The row that contains
highest particle in the aggregate is usually set as a refer
row with m50. Thus, in bond DLA, the upper part hasm
>0 and the lower part hasm<0, and in site DLA, the uppe
part hasm>1 and the lower part hasm<1 , as explained in
more detail in Sec. II. Note that in either case the dividi
row is considered to belong to both parts. In the upper p
it is possible to express the potentials in rowm11 as a linear
combination of those in rowm,

F~m11,n!511 (
n850

N21

F~m,n8!gN~n2n8!. ~1.8!

This is especially useful for the bottom row of the upper pa
m50 or m51 ~depending on the type of sticking cond
tions!. The boundary Green’s functiongN(n), appearing in
Eq. ~1.8!, is given by

gN~n!5
1

N (
l 50

N21

e2k l cos~kln!. ~1.9!
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The finite set of allowed wave vectorskl5(2p/N) l for l
50, . . . ,N21 is imposed by the horizontal periodicity. Th
factor k l is related tokl through the dispersion relation

sinh~k/2!56 sin~k/2!, ~1.10!

or more explicitly,

e2k(k)522 cos~k!2A@22 cos~k!#221. ~1.11!

An interesting property of the Green’s function is that

(
n50

N21

gN~n!51. ~1.12!

This property was proved algebraically in Ref.@16# and was
used in Refs.@16,14# to check the computations of th
Green’s function. It is also used in the sample calculation
Sec. II B in the current paper for the same purpose.

Usually, there is no general derivation for the solution
the lower part. In spite of that, the number of sites in t
lower part is finite and not too large, so it is possible
simply write the equations for each of the potentials. T
solution of the resulting finite and linear set of equations
then straightforward.

The paper is organized as follows. In Sec. II, we pres
in detail the differences in the computation of the grow
probabilities between bond- and site-sticking conditio
This presentation also explains the connection with
Laplace equation more rigorously. After that we perform
few sample calculations, forN52 and N53, in order to
demonstrate the method presented in the Introduction.
then report the results of the computations forN between 4
and 10 for various orders of approximationsO. We point out
that the results collapse onto a universal function that ena
the extrapolationO→` for N58, 9, and 10. This extrapo
lation reduces the error appreciably. In Sec. III, we pres
the simulation we made in order to verify our theoretic
predictions. This presentation also explains how the bou
ary Green’s functiongN(n) is used in some way as a prob
ability function, in order to make the simulation more ef
cient. We summarize in Sec. IV.

II. ENUMERATION

Our computation method is referred to as enumerati
because it involves a systematic processing of some c
plete lists of configurations.

A. The differences between site- and bond-sticking conditions

There are two differences between site- and bond-stick
conditions. The first is in the boundary conditions used
the solution of the Laplace equation, and the second is in
way the potentials are used to determine the growth pr
abilities. In order to explain this, it is important to understa
the subtleties of the relation between DLA and the Lapla
equation. In DLA, the random walker is injected into a ra
dom site near the remote boundary and it diffuses unti
attempts to cross a perimeter bond, in which case it g
7-3
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BOAZ KOL AND AMNON AHARONY PHYSICAL REVIEW E 63 046117
stuck. A possible way of measuring the growth probabilit
for a particular interface configuration is to send many r
dom walkers, one after the other, and remove them after
stick. One has to keep track of how many particles get st
in each site. Eventually, the growth probabilities per site
estimated by the fraction of particles that got stuck in ea
site. Instead of releasing the random walkers one at a tim
is more efficient to release many of them simultaneou
and let them perform a random walk without interacting w
each other. Moreover, instead of releasing a large amoun
particles in a single batch and waiting until all of them stic
it is also possible to inject them at a constant rate near
boundary, i.e., in each time step inject a new particle i
each site near the boundary with a uniform probabilityr. The
advantage in this way of performing the measurement is
after an initial equilibration time the system arrives at
steady state, which is characterized by a time-indepen
average number of random walkers in all of the sites, incl
ing sites that are not near any of the boundaries. In the ste
state, the average number of random walkers entering
the system in each time step at the upper boundary is e
to the average number of random walkers vanishing ou
the lower boundary. Denote the average number of rand
walkers in each site in the steady state byF(m,n); then it
satisfies the discrete Laplace equation~1.2!, because every
random walker is equally likely to go to any one of its nea
est neighbors and becauseF is time-independent.

Special care should be give to sites near the bounda
Near the upper boundary, each site has only three nea
neighbors, and particles are added at a constant rater, there-
fore,

F~m,n!5
1

4
@F~m,n21!1F~m,n11!1F~m21,n!

1F~m,n!#1r . ~2.1!

Note that the last term on the left beforer is F(m,n), instead
of F(m11,n), because the particles that randomly choose
go up are unable to do so because of the boundary,
therefore they remain in the same place. Now, let us de
F(m11,n)[F(m,n)14r as a fictitious density above th
boundary. Then we see that Eq.~2.1! turns into the standard
Laplace equation. This shows that instead of using the in
tion rate parameterr, it is possible to use the regular Laplac
equation with the Neumann-type boundary conditions t
require the specification of the electric field, which corr
sponds to the difference in the potential across the up
boundary. Since the value ofr does not change the growt
probabilities, we are free to choose any value for it. If, f
example, we chooser 5 1

4 , then the boundary conditions a
the top are

]F

]m
[F~m11,n!2F~m,n!51 ~2.2!

for n50,1, . . . ,N21. We choose the upper boundary to
very far away from the lower one, because this simplifies
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analytic expressions involved in the solution of the Lapla
equation, while leaving the sticking probabilities practica
unchanged.

The difference between site and bond DLA appears in
bottom boundary conditions. In bond DLA, each rando
walker that attempts to go into the aggregate is taken ou
the system. Thus the Laplace equation is valid for sites
are nearest neighbors to the aggregate, if we choose
boundary conditionsF50 on the aggregate itself. In sit
DLA, random walkers are removed as soon as they arriv
sites that are nearest neighbors to the aggregate and ther
we imposeF50 there instead. Figure 1 shows the soluti
to the Laplace equation around a particular aggregate
bond-sticking conditions, and Fig. 2 shows the solution n

FIG. 1. An example of the solution of the Laplace equati
¹2F(m,n)50, with boundary conditionsF50 on the aggregate
and ]F/]m51 on the upper distant boundary. Here, the width
N55 and there are periodic boundary conditions on the sides.
axes indicate the directions of the coordinatesm and n. These
boundary conditions are consistent with bond-sticking condition

FIG. 2. The solution to the Laplace equation near the sa
aggregate as in Fig. 1, only with site-sticking conditions. T
circles denote the perimeter sites where a random walker m
stick. The boundary conditions are thatF50 on these sites, unlike
the case of bond-sticking conditions whereF50 on the aggregate
itself. The boundary conditions]F/]m51 at largem remain un-
changed.
7-4
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DIFFUSION-LIMITED AGGREGATION AS A . . . PHYSICAL REVIEW E63 046117
the same aggregate for site-sticking conditions. The fig
also shows that the boundary for the Laplace equation
obtained by coating the aggregate with a layer of circ
sites. This may cause two different aggregates to have
same boundary for the Laplace equation, see Fig. 3. Co
quently, any two different aggregates that have the sa
boundary for the Laplace equation must have the exact s
set of growth probabilities and can therefore be considere
equivalent. Thus, from now on when we refer to an interfa
configuration, we relate to the shape of the boundary for
Laplace equation. The probability to be in such a configu
tion is a sum over all the underlying aggregate configu
tions. Another effect of the transition to the Laplace boun
ary is the narrowing of fjords. The padding of the aggreg
by circled sites causes all the fjords to be narrower by t
sites. Thus, a random walker can only penetrate into ag
gates that have branches that are at least three sites ap

For both types of sticking conditions, the growth pro
ability in each site is evaluated as the average numbe
random walkers that stick in that site per unit time, norm
ized by the total number of particles sticking during a sin
time step. In the steady state, the normalization facto
equal to the average total number of random walkers injec
into the system, which is equal torN5N/4.

FIG. 3. Two different aggregates~represented by the dashe
squares! with N52, having exactly the same set of sites where
random walker may stick~shown in circles!, and thus having
the same boundary~the bold line! for the Laplace equation, wher
F50.

FIG. 4. The growth probabilities for the aggregate shown in F
1. The growth probability in each perimeter site is proportional
the potentialF at that site and to the number of bondsNb leading
from the site into the aggregate~denoted by arrows!, e.g.,Nb53 for
the site at (21,2) andNb51 for the site (0,2) right above it.
04611
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In bond DLA, a fraction of 1/4 of the particles vanishe
after choosing to go via bonds that connect to the aggreg
The average total number of particles sticking in a site wo
then be a sum over all of its interface bonds,(bF/4
5NbF/4, whereNb is the number of bonds that connect th
site to the aggregate. Thus the growth probability in each
is NbF/N, see Fig. 4. In Ref.@14#, we arrive at the same
result using the discrete Gauss theorem.

In site DLA, we must sum over bonds that leadinto the
site, rather than out of it. The growth probability per site
therefore

psite~m,n!5
1

N (
nn

F~m8,n8!, ~2.3!

where psite(m,n) is the total sticking probability at the pe
rimeter site (m,n), see Fig. 5. Unlike the case of bond
sticking conditions, where a single potential determines
sticking probability in a particular site, now the potentials
several different sites contribute. This difference gives
uppermost tip of the aggregate an even greater advan
relative to bond DLA, because a single-particle tip gath
contributions from three sides in site DLA, whereas in bo
DLA the only contribution is from above. This comes
addition to the screening property of the Laplace equat
~common to both types of sticking conditions!, which causes
the sticking probabilities at the lower parts of the interface
decrease exponentially.

B. Exact solutions for NÄ2,3

The best way to explain the enumeration method is
show some sample calculations in detail. We present here
two simplest cases, namely,N52 andN53. In these cases
there is only a finite number of configurations, so it
possible to get an exact solution with no need for appro
mations.

For N52, the interface of the aggregate itself has an
finite number of possible configurations, because it has

.

FIG. 5. The sticking probabilities in each of the circled sites
Fig. 2. They are computed by summing over all of the bonds tha
into each site~denoted by arrows!, unlike the case of bond-sticking
conditions, where contributions are summed over bonds that go
of each site .
7-5
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BOAZ KOL AND AMNON AHARONY PHYSICAL REVIEW E 63 046117
shape of a step whose heightj can be any non-negative in
teger@16#. However, in site DLA there are only two distinc
states:j 50 andj .0. The casej 50 refers to a flat interface
i.e., the two columns have the same height, and a gro
process will create a step withj 51, with probability 1. For
any step sizej .0, there are only two sites where a rando
walker may stick: above the highest particle in the aggreg
or on its side; see Fig. 3. There is no possibility for t
random walker to penetrate into a fjord inN52, because it is
too narrow, and the particle would stick at its entrance. T
two configurations are indexed byi 51 and i 52, respec-
tively, and are shown in Fig. 6.

We now begin building the evolution matrixE by finding
the growth probabilities for each of the two configuration
As mentioned, configurationi 51 turns intoi 52 with prob-
ability 1, henceE1,150 andE2,151. It is important to keep
track of the total upward growth probability for each co
figuration, pup( i ), that corresponds to events in which
newly stuck particle is higher than all of the particles in t
aggregate. In this casepup(1)51.

In order to solve fori 52, we first have to compute th
Green’s function according to Eq.~1.9!, which gives

g2~0!522A250.5858,
~2.4!

g2~1!5A22150.4142.

We check our calculations by verifying thatg2(0)1g2(1)
51, as expected from Eq.~1.12!. The potentialF near the
growth sites can be expressed in terms of the variablx
[F(1,0) according to Eq.~1.8!, as shown in Fig. 6. We
usually set the row containing the highest particle in
aggregate as the reference row, withm50. Thus, the row
m51 always contains the highest circled site that belong
the Laplace boundary. Each of the sites in rowm51 con-
tributes to the potentials in the sites in rowm52. The weight
of the contribution is equal to the value of the Green’s fun
tion gN(n), wheren is the horizontal distance between th

FIG. 6. The two possible configurations forN52. The circles
denote the sites where a random walker might stick. Also shown
the possible transitions between them, denoted by arrows, and
relevant matrix elementsEi , j . The distribution of the potentialF
over the lattice is demonstrated only for configurationi 52, see text
for explanation. The double arrows (⇓, ⇒, and⇐) show the bonds
of the possible access paths, which a random walker can take
the circled sites. The bold double arrow shows the only bond go
into site (0,0). The other three bonds lead into site (1,1).
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contributing site in rowm51 and the evaluated site in row
m52. In this simple case, there is only one site with a no
zero potential, namely,F(1,0), which is yet unknown, and
which we denote byx. The site (1,1) on its side is neare
neighbor to the aggregate and therefore we setF(1,1)50.
Thus, the potential of the sites in rowm52 only has a con-
tribution from x. More specifically,F(2,0)511g2(0)x be-
cause it is right abovex, andF(2,1)511g2(1)x because it
is removed by one site. The potentialF(2,0) does not con-
tribute to any growth process, but is important for solving f
x. The variablex is found using its Laplace equation,

4x511g2~0!x,
~2.5!

⇒x5
22A2

2
50.2929.

Growth in site (0,0) results in the flat configurationi 51. It
can only occur via one bond from site (1,0), denoted b
bold double arrow (⇓) in Fig. 6. Hence,

E1,25
x

2
5

22A2

4
50.1464, ~2.6!

where the denominator comes from the normalization fac
N52. Growth can also occur in site (1,1). This time the
are three different bonds coming from two sites: there
two bonds coming from (1,0) and an additional one com
from (2,1). This upward growth results in the same config
ration, so

E2,25pup~2!5
1

2
@2x111g2~1!x#5

21A2

4
50.8536.

~2.7!

This concludes the calculation of all of the growth pr
cesses. The resulting evolution matrix is

E5F0 0.1464

1 0.8536G . ~2.8!

We verify that the matrix is properly normalized by notin
that the sum of the terms in each of its columns is equal to
i.e.,

(
i 51

2

Ei , j51, j 51,2. ~2.9!

The general theorem mentioned in the Introduction ensu
the existence of a single eigenvector with an eigenvalue o
or in other words, a fixed point vectorP* that satisfies

P* 5EP* . ~2.10!

The fact that the process is closed is manifested in Eq.~2.9!.
The process is also irreducible because there is a finite p
ability to go from any initial state to any final state during
finite number of time steps. The fact that there is a sin
fixed point implies that starting from any initial state, th
system will converge to the fixed point. This fixed poi

re
the

to
g
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represents the asymptotic time probabilities for seeing ei
one of the two possible configurations.

The eigenvalues are the roots of the characteristic poly
mial,

l051,
~2.11!

l152
22A2

4
520.1464,

and the normalized fixed-point vectorP* is given by

P1* 5
52A8

17
50.1277,

~2.12!

P2* 5
121A8

17
50.8723.

The steady-state weights enable us to calculate the ave
upward growth probability,

^pup&* 5(
i 51

2

Pi* pup~ i !5
121A8

17
50.8723, ~2.13!

which is connected to the mean density,

r~2!5
1

2^pup&*
5

62A2

8
50.5732. ~2.14!

It is also possible to calculate the rate of convergence
the steady state. In general, the rate of convergence is d
mined by the largest eigenvalue ofE, other than 1. Suppos
that at timet50 the state of the system differs from th
steady stateP(0)ÞP* . The difference vector

v~0![P~0!2P* ~2.15!

belongs to the linear subspace of vectorsV5$vu(v i50%,
because bothP(0) andP* are normalized probability vector
and thus the sum of their components is equal to 1. Now,
~2.9! ensures thatV is an eigensubspace ofE, and as such it
must contain at least one eigenvector. Since in this sim
case the space of configurations is only two-dimensio
thenV is one-dimensional, andv(0) is necessarily an eigen
vector with the eigenvaluel1520.1464. Aftert time steps
the state of the system is

P~ t !5EtP~0!5P* 1l1
t v~0!. ~2.16!

Therefore, the deviation from the steady state decays e
nentially,

P~ t !2P* 5l1
t v~0!5~21! te2t/tv~0!, ~2.17!

where

t[2
1

lnul1u
50.5584. ~2.18!
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This means that a single time step is practically suffici
to arrive at the steady state. All of these theoretical pred
tions agree with results obtained from numeric simulatio
up to the accuracy of the simulation, which is better th
1025. This dynamics is actually exactly the same as the fi
order approximation of the frustrated climber model in R
@14#, except that the analysis of the temporal convergenc
a little bit more refined there.

The solution of the caseN53 is also relatively simple,
because again there is only a finite number of growth c
figurations. This is because the width of the widest poss
fjord is two sites, which is still insufficient for a random
walker to penetrate, i.e., a random walker sticks as soon
enters into a fjord. The three possible configurations are
dexed in Fig. 7. These are the same as the three config
tions of the first-order approximation for bond DLA withN
53 @14#. As in the example ofN52, we proceed to calcu
late the probabilities for every growth process in each of
configurations. Once again, we first calculate the Gree
function,

g3~0!5
62A21

3
50.4725,

~2.19!

g3~1!5g3~2!5
12g3~0!

2
5

A2123

6
5 0.2638.

The first configuration,i 51, grows with probability 1
into configurationi 52. Thus, E2,151 and E1,15E3,150,
and alsopup(1)51. The potential diagram fori 52 is shown
in Fig. 8. Because of symmetry it is possible to conclude t
F(1,0)5F(1,2)5x. The Laplace equation forx is

4x5x111@g3~0!1g3~1!#x,
~2.20!

⇒x5
92A21

10
50.4417.

The sticking probability at (0,0) isx/3, because there is
single connecting bond, and because the normalization fa
is 1/3 for this case. The resulting configuration isi 53, how-
ever a sticking event at (0,2) also leads toi 53, so that
E3,25

2
3 x5(92A21)/1550.2945. The other possibility is a

upward growth at (2,1), which results in the initial config
ration i 52. Thus, E2,25pup(2)512E3,25(61A21)/15
50.7055 andE1,250.

FIG. 7. The possible configurations and the possible transiti
between them forN53.
7-7



lv

-

wth

ristic
ady

r of

this
of
s a
ed

ions
e

on-
gle
p

ace
lace

ary
ex-

BOAZ KOL AND AMNON AHARONY PHYSICAL REVIEW E 63 046117
The potential diagram fori 53 is shown in Fig. 9. The
Laplace equation is

4x511g3~0!x,
~2.21!

⇒x5
62A21

5
50.2835.

A sticking event in (0,1) leads toi 51, thereforeE1,35x/3.
The other possible sticking events at (1,0) or (1,2) invo

FIG. 8. A ‘‘potential diagram’’: the potentialsF(m,n) of con-
figuration i 52, expressed in terms of the variablex.

FIG. 9. The potential diagram for configurationi 53.
04611
e

upward growths, which result ini 52, i.e.,E2,35pup(3)51
2x/35(91A21)/1550.9055. This completes the calcula
tion of all the elements of the evolution matrix:

E5F 0 0 0.0945

1 0.7055 0.9055

0 0.2945 0
G . ~2.22!

The normalized fixed point of the matrix is

P* 5@0.0210, 0.7562, 0.2227#. ~2.23!

This enables the computation of the average upward gro
probability and of the average density:

^pup&* 5(
j 51

3

Pj* pup~ j !50.756 245,

~2.24!

r5
1

3^pup&*
50.440 774.

The second largest eigenvalue determines the characte
time constant of the exponential convergence to the ste
state,

t52
1

lnul1u
50.56. ~2.25!

C. Approximations for NÌ3

The two examples of the previous sections, forN52 and
N53, are special because there is only a finite numbe
possible configurations. The caseN54 is the narrowest cyl-
inder that can have a fjord that is three sites wide. Since
fjord can be arbitrarily deep, there is an infinite number
configurations. In spite of that, every configuration that ha
fjord that is more than one site deep is uniquely determin
by its depth, i.e., there is only one configuration withDm
52, a single configuration withDm53, and in general a
single configuration with a specificDm if Dm>2. The
unique configuration withDm52 is shown in Fig. 10, along
with the single configuration with a specificDm that is larger
than 2. Other than that, there are four possible configurat
with Dm51, which are shown in Fig. 11, and finally th
trivial flat configuration withDm50.

This case resembles bond DLA withN52 @16#, in the
sense that in both cases there is an infinite number of c
figurations, but this infinity can be represented using a sin
parameter. In Ref.@16#, this parameter is called ‘‘the ste
size’’ and is denoted byj, but actually it is the same asDm.
The case of site DLA withN54 is a bit different, because
there are four configurations withDm51 instead of one.
There is also a resemblance to the solution of the Lapl
equation for the two cases, because in both cases the Lap
equation is solved on a single column with zero bound
conditions on the sides. Thus, in both cases there is an
7-8
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DIFFUSION-LIMITED AGGREGATION AS A . . . PHYSICAL REVIEW E63 046117
ponential decay of the potential inside the fjord, which
governed by the multiplicative factore2k f522A3. This en-
ables us to treat the current case in an analogous way to
previous one. This could have given us analytic express
for the Markovian matrixEi , j , i , j 51,2, . . . ,̀ , for the
steady-state vectorPi* , i 51,2, . . . ,̀ , and for the distribu-
tion of gaps inside the aggregate. However, we omit the p
sentation of this calculation because it is not the main in
est of this work, and so we treat the case ofN54 in the same
way asN.4.

For N.4, the boundary may be complex, and it cannot
easily characterized because the width of a fjord can flu
ate and overhangs may appear. We therefore use the app
mation scheme described in the Introduction, which was a
used for bond DLA@14#. The calculation procedure involve

FIG. 10. The only configurations for a cylinder of widthN54:
~a! Dm52, ~b! Dm.2.

FIG. 11. The four possible configurations forN54 with Dm
51. These configurations are indexed betweeni 52 andi 55, and
the flat configuration withDm50 is indexed byi 51.
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going over all the possible configurations to some order,
calculating their set of growth probabilities. It is feasible
perform this task manually when the number of configu
tions is relatively small, but asN andO increase, the numbe
of configurations grows exponentially and it becomes i
practical to do so. We use the same computer program
was used for bond-sticking conditions, after making the n
essary adjustments due to the site-sticking conditio
Manual calculations may still be important as test cases
check the operation of the program.

The program goes over all of the possible configuratio
systematically. It starts with the trivial flat configuratio
(Dm50), which is indexed byj 51. This configuration has
only one possible growth process, which occurs with pro
ability 1, that turns the interface into configurationj 52,
which has a single bump. The program then continuesj
52 and analyzes its growth probabilities. Every growth p
cess changes the shape of the boundary. Each time a pa
sticks in a certain site, the program has to identify the new
formed configuration. In order to do so, it marks all of th
nearest neighbors of the newly attached particle, beca
new particles may stick there. The new configuration
searched for in the existing list of configurations, which we
already analyzed by the program. If it does not exist, the
is added at the end of the list. In either case, the prog
identifies the index of the resultant configurationi. Now, if
the index of the original configuration isj, then the growth
probability is stored in the matrix elementEi , j .

A configuration is characterized using the set of sites t
are connected to infinity because these are the sites tha
accessible to the random walker. Of course, any site tha
higher than the highest site on the boundary is connecte
infinity. Hence, it is sufficient to specify only the set of site
that are not higher than the highest boundary site~the region
m<1). A single growth process may cause a whole reg
of sites to disconnect from infinity, for instance by seali
off an entrance to a fjord. This means that it is not sufficie
to mark the nearest neighbors of a newly attached parti
but that it is necessary to recheck the complete set of s
that are connected to infinity. We perform this by an alg
rithm that marks this set recursively.

Special care has to be taken for upward growth proces
because they may causeDm to exceedO. In case this hap-
pens, the bottom row of the configuration is truncated.
nally, symmetry has to be taken into account. Rotatio
around the axis of the cylinder and reflections about a
vertical axis do not change the growth probabilities or t
steady-state weights, so the set of all of the symmetric c
figurations is represented by a single canonical choice. M
specifically, a configuration is represented by a binary w
that consists ofN3O digits that correspond to the sites; th
empty sites that are on the exterior are given a value o
and the rest of the sites are assigned with zeros. We ch
the canonical form as the word that has the maximal num
cal value.

After the complete list of configurations is processed,
calculation of the evolution matrix is completed, and it
closed, i.e.,( iEi , j51 for everyj. Then the steady-state vec
tor P* is calculated iteratively by applying the evolution m
7-9
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TABLE I. The approximated densitiesrc and the number of configurationsNc for various ordersO and
cylinder widthsN. The approximated densities from enumeration are compared to simulation resu
addition, the extrapolated densityr(N,O→`) is also presented.

N\O Simulation O→` 1 2 3 4 5 6 7 8

2 0.5732 0.5732
2

3 0.4408 0.4408
3

4 0.3744 0.3744 0.3743 0.3750 0.3744 0.3744 0.3744 0.3744
5 6 7 8 9 10

5 0.3334 0.3334 0.3323 0.3355 0.3336 0.3334 0.3334 0.3334 0.3334
7 10 14 24 52 134 378

6 0.3049 0.3049 0.3025 0.3094 0.3057 0.3050 0.3049 0.3049 0.3049 0.
12 21 35 94 395 1970 10344 55161

7 0.2837 0.2837 0.2798 0.2908 0.2857 0.2840 0.2837 0.2837 0.2837
17 38 76 280 1831 13575 98479

8 0.2671 0.2671 0.2616 0.2767 0.2707 0.2679 0.2672 0.2671
29 81 190 846 7605 83043

9 0.2536 0.2537 0.2467 0.2655 0.2593 0.2551 0.2540
45 161 451 2421 29220

10 0.2424 0.2426 0.2341 0.2562 0.2503 0.2450 0.2431
77 349 1152 7213 111067

11 0.2329 0.2233 0.2483 0.2431 0.2368
125 733 2885 21688

12 0.2247 0.2139 0.2415 0.2371 0.2300
223 1627 7504 67450
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trix many times on some initial-state vector. This method
much faster than any of the standard techniques for solvin
set of linear equations, especially when the number of v
ables is very large. The next step is to calculate the ave
upward growth probability, according to Eq.~1.4!, and the
average density, according to Eq.~1.5!. Our computer re-
sources enabled us to conduct the enumeration only up
finite orderOmax that depends onN. As explained above, fo
N52 and N53 there exists a finite number of configur
tions, and higher-order approximations are irrelevant. O
may be surprised that we are able to reachO58 for N56,
but we do not reach such a high order forN54 andN55,
because there are definitely fewer configurations in the s
order of approximation for lowerN’s. The reason for this is
that very good convergence is achieved already forO5N, so
we had little to gain by going to much higher orders, and
stop atO5N12 for N54 andN55. The calculated densi
ties rc(N,O) are presented in Table I, together with th
number of configurationsNc . The table also presents th
extrapolation and simulation results.

D. The extrapolation of the order of approximation
to infinity, O\`

Very good accuracy~about 1024) is also obtained forN
58, even thoughOmax5N2256. However, forN>9 the
results are not very accurate, because the maximal avai
order is onlyO55 for N59,10 andO54 for N511,12. In
spite of that, we are able to arrive at a more precise esti
04611
s
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tion for N59,10 by extrapolatingO→`. The extrapolation
does not improve the accuracy of the casesN511,12 to a
satisfactory level. Our aim is to deduce the value ofr(N)
5 lim

O→`
rc(N,O) from the limited range of available val

ues for O. We start by noting that our data practical
reached asymptotia forN54,5,6. We detect that the differ
ences,rc(O,N)2rc(O11,N), decay exponentially and thu
conclude that the functionf 5 ln@rc(N,O)/r(N)21# is very
close to being linear. Substituting the parametrizationf 5b
2aO/N, we are able to extract the three unknowns—a, b,
and r(N)—using at least three data points. ForN56 and
O54, 5, and 6, we find thatb50.03 anda512.31. The
value ofr(6) turns out to be very close to the highest ava
able approximationrc(6,8).

Scaling theory would imply that, for largeN and O, f
should become a universal function, which depends only
the scaled ratiox5O/N ~without an additional dependenc
on N). Following this expectation, we thus conjecture t
general relation

rc~N,O!5r~N!@11ef (O/N)#, ~2.26!

with f (x).212.3x for N,O@1.
To test this conjecture, we estimatedr(N) for N>4 via

r~N!.
rc~N,Omax!

11ef (Omax/N)
. ~2.27!
7-10
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We have then used this estimate to calculaterc(N,O)/r(N)
for O,Omax. The resulting values are shown in Fig. 1
together with the linef (x)5212.3x. Clearly, all the values
for O/N*0.4 are consistent with our conjectured form f
f (x).

The values ofr(N), as deduced using Eq.~2.27!, are
listed in Table I. Clearly, they all agree with the values fro
the simulations, except for small deviations that appear
N59 and 10. In the casesN511,12 the deviations are rela
tively large, becauseOmax is too small, and hence the ex
trapolation results are not specified.

E. An enumeration-based estimate of the fractal dimensionD

In the preceding section, we obtain very accurate e
mates of the asymptotic (O→`) average steady-state dens
ties r(N). In this section, we extrapolate the latter densit
in the limit N→` in order to find the fractal dimensionD.
Consider anNd segment in the steady-state regime
growth. Assuming that the structure is a self-similar frac
which has no characteristic length scale other thanN, we
expect that the average mass of the segment would be
portional toND, and that the density would be proportion
to ND2d. In principle, however, one expects some corre
tions to scaling as in Eq.~1.6!. Taking only the first correc-
tion term of that equation into account, we get an appro
mation that depends on the four parametersD, A, B, andu:

ra~N!5AND2dS 11
B

NuD , ~2.28!

where the subscripta denotes that this is an approximatio
Using the four data points with 7<N<10, a fit to Eq.~2.28!
yields D51.64, ln(A)520.63, B51.31, andu51.48. The
calculation of the parameters can also be based on more
the minimal four points, using a least mean-square e
method. We choose to minimize the logarithmic~or relative!

FIG. 12. Data collapse ofef5@rc(N,O)/r(N)21# vs O/N for
all the data points with 4<N<10 andO.2, on a semilogarithmic
scale. The continuous line shows the linear approximationf
.212.3O/N.
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errorsDr/r rather than the errors in the densitiesDr, be-
cause we find them to be more uniformly distributed. T
results of the fit using the six data points with 5<N<10
yield D51.7460.06, ln(A)521.060.3, B51.560.6, and
u50.8060.13. The error estimates are evaluated usin
confidence level of 0.95. Since the fit yields a value foru
that is close to 1, we also try a three-parameter fit, fixingu
51. Using the three rightmost data points forN58, 9, and
10 givesD51.68, ln(A)520.799, andB51.16. Using more
points with 5<N<10, we get

D51.6860.01,

ln~A!520.78460.016, ~2.29!

B51.1260.05.

Finally, an alternative four-parameter form, includin
only ‘‘analytic’’ corrections, is

ra~N!5AND2dS 11
B

N
1

C

N2D . ~2.30!

This time the results for 7<N<10 are D51.65, ln(A)
520.68, B50.55, andC51.10, and the least mean-squa
calculation for 5<N<10 yields D51.7060.02, ln(A)
520.8760.08, B51.560.4, andC520.560.4.

We thus conclude that the fractal dimension of cylindric
DLA is D.1.6860.01, close to the results of earlier nume
cal work @6#.

III. SIMULATION

As mentioned, our analytical enumeration results are c
firmed by simulations. In this section, we describe how o
simulations were conducted, paying special attention to
boundary Green’s functiongN(n), which is given a new
probabilistic meaning. We also discuss the accuracy of
results, and finally, we try to fit the results to some appro
mations as in the end of the preceding section and ob
some more estimates of the fractal dimension.

Our simulation is performed on a lattice, which is repr
sented by a 2D array variable. Each of the variables in
array can assume one of two possible values, 1 or 0,
determine whether the relevant site is occupied by an ag
gate particle or not, respectively. The size of the array
(14N)3N, i.e., its width is N and it is composed of 14
blocks of N3N sites stacked one on top of the other. T
number 14 is quite arbitrary and could be chosen differen
In principle, the lattice should be tall enough to allow th
aggregate to arrive at a steady state, and also to allo
margin at the top, because the average density of the ag
gate is lower near the growing front. Each time a new clus
is initialized, the lattice array is cleared so that all of
variables are set to 0, except for the bottom row, which is
to 1. This means that the initial shape of the aggregate
horizontal line at the bottom of the lattice. A random walk
is characterized by the coordinates (m,n) of its position. In
each simulation step, a direction is chosen randomly and
7-11
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BOAZ KOL AND AMNON AHARONY PHYSICAL REVIEW E 63 046117
particle is advanced in that direction. If the particle happe
to go into a site that is nearest neighbor to the aggregate,
it sticks, i.e., the value of the relevant lattice variable is u
dated from 0 to 1. Then the next random walker is releas
and so on.

A. The role of the Green’s function

In principle, each new random walker should be relea
far above the aggregate, near the upper distant boundar
practice, nothing can happen to the random walker~it cannot
stick! until it crosses the bold line in Fig. 13. This line
drawn between the highest row where a random walker
stick (m51) and the row above it (m52), and thus it dif-
ferentiates between the active zone below the line, withm
<1, and the inactive zone above it, withm.1. The projec-
tion of the path of the random walker on the vertical axis~its
m coordinate! is also a random walk, only in one dimensio
~1D!. Usually in 1D there is a probability of 1/2 to go up an
the same probability to go down, but in our case, there
probability of 1/4 to go in either direction, and a probabili
of 1/2 to stay at the same row. Nevertheless, this motio
still equivalent to a random walk, however the effective tim
step is longer. A quality of 1D random walks is that there
a probability of 1 to arrive at any site~no matter how far!
within a finite time. Therefore, there is a probability 1 th
eventually the random walker would cross the line from
inactive zone into the active zone. The random walker
equally likely to cross this line at any of theN sites, so
instead of waiting for a long time, it is more efficient to sta
the simulation by inserting the random walker in a rand
site just below the line in the active zone@18#.

But what happens if the path of the random walker h
pens to cross the line into the inactive zone? Once more
apply the same reasoning and claim that ultimately the r
dom walker would recross the line downwards at some p
with probability 1. Unlike the initial insertion, this time th
distribution of the reentry point is not uniform. It is quit
easy to see, for example, that there is a greater chance fo
particle to reenter at the exact same site from which it ex
than for it to reenter at a site that is far away. Let us den
by C(m,n;n8) the probability that if the particle is at som

FIG. 13. The bold line separates between the upper inac
zone withm.1 and the lower zone withm<1. A random walker
cannot stick in the inactive zone.
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initial site (m,n) in the inactive zone (m.1), then it will
cross the line for the first time at (m851,n8). In the next
time step, the random walker moves to one of its nea
neighbors with equal probability. Therefore,C(m,n;n8)
must be equal to the average ofC on all the nearest neigh
bors. This implies thatC satisfies the Laplace equation~in
the coordinatesm andn),

¹2C~m,n;n8!50. ~3.1!

The boundary conditions forC at the lower boundary are

C~m51,n;n8!5H 1, n5n8

0 otherwise.
~3.2!

This is true because if the random walker is already in
row m851, then it already passed the line betweenm51
andm52 and so it stops before it starts. The boundary c
ditions at the top areC5const, or equivalently,

lim
m→`

]C

]m
50. ~3.3!

These are the exact same conditions satisfied by the Gre
function@16#, and so the theorem about the uniqueness of
solution of the Laplace equation with the boundary condit
assures thatC is equal to the Green function, and especia
at the first row above the linem51,

C~1,n;n8!5gN~n2n8!. ~3.4!

This means that each time the random walker attempt
cross the line to the inactive zone, it can be returned to
active zone immediately. The distance of the reentry po
from the exit point should be chosen randomly from t
distribution defined by the Green’s functiongN(n). This
policy saves a lot of simulation time in comparison with t
alternative option of letting the random walker wander free
until it finally sticks, or until it passes some arbitrary critic
distance from the aggregate. We note in passing that
discussion in this section proves Eq.~1.12! in an alternative,
probabilistic approach, simply due to the fact thatgN(n) is a
probability function.

B. Analyzing the statistics

Figure 14 shows an example of a typicaldensity profile,
which is the average density as a function of height. Only
middle section of the aggregate is taken into account in m
suring the average steady-state densityr(N). Our impression
is that a margin ofN sites from each side is enough, but w
work with margins of 2N. A possible way of estimating the
accuracy of this average is by taking the standard devia
and normalizing by the square root of the number of ro
that participate in the averaging. This is somewhat optim
tic, however, and would produce very low error estimat
because this calculation assumes statistical independenc
tween adjacent rows, where in fact there are significant c
relations. The right factor to normalize by is therefore t

e
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square root of the effective number of independent ro
Since the aggregate is fractal, the only available length s
is N, and therefore the correlation lengthj should be propor-
tional toN. We therefore conservatively guess that two ro
that areN rows apart are independent, and hence we estim
the accuracy by the standard deviation divided byA10, be-
cause there are 10 blocks ofN3N is the steady-state regio
in our simulations. This error estimate is expected to h
the correct dependence on the number ofN3N blocks, but
there could be some numerical factor missing.

An alternative way of measuringr(N) is by measuring
^pup&* directly and using Eq.~1.5!. After the aggregate
reaches a height of 2N, we assume that it is in the stead
state and we start gathering statistics. In particular, we co
the number of upward growth events, when the rand
walker sticks above all the particles in the aggregate. O
results show very good correspondence between the two
ferent methods; the typical relative difference is on the or
of 1026.

The simulations were carried out for the following valu
of N: 2,3, . . .,12, 16, 24, 32, 48, 64, 96, and 128. We d
not go beyond that because our computer resources did
suffice to iterate a large enough number of clusters to ob
a relative accuracy of about 1024 or better, as obtained fo
the other cases.

We now proceed to fit the results for the 10 available d
points with 128>N>10 in a similar way to Sec. II E. The
difference is that now we use the error estimatess i to give
weights to the different data points, because not all the
curacies are the same. This way the fit will allow grea
residuals for data points with larger error estimates. Our fi
attempt is to fit the four-parameter approximation of E
~2.28!. The results areD51.67360.002, ln(A)520.770
60.0013,B51.0360.06, andu50.9660.06. The maximal
relative residual is 1.231024. Once more we setu51 and
perform the fit for the remaining three parameters. The
sults are

FIG. 14. The density profile as a function of height for a latti
with N510 averaged over someNi'23107 iterations. The height
of the lattice is 140 sites.
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D51.67160.001,

ln~A!520.76260.003, ~3.5!

B51.07160.015.

The resulting error estimates seem a bit too optimistic, p
haps also because of the presence of some systematic e
that are not taken into account. The simulation results
shown in Fig. 15 on log-log scales as plus signs, along w
the latter three-parameter fit, shown as a dashed line.
figure also shows the enumeration results as circles. S
the differences are hardly noticeable, we display the rela
~logarithmic! residuals v i[@r(Ni)2ra(Ni)#/r(Ni) sepa-
rately in Fig. 16 on semilogarithmic scales, in comparis
with the relative error estimates6s i . The maximal relative
residual is 1.331024. This is consistent with the order o
magnitude of the estimateda priori errors.

A factor that indicates the compatibility between thea
priori error estimatess i and thea posteriori residualsv i is

x2[
1

Nd
(

i
S v i

s i
D 2

, ~3.6!

whereNd , the number of degrees of freedom, is equal to
number of data points minus the number of unknown para
eters. The value ofx2 should be close to 1. In the latter fi
we getx250.9, whereas we getx250.3 in the former. The
results of the fit imply that the three-parameter approxim
tion is sound.

For the sake of comparison, we also try to fit to the oth
test approximations that were introduced in the preced
section. The best fit to the four-parameter approximation
Eq. ~2.30! is D51.672160.0012, ln(A)520.76660.006,
B51.1260.07, andC520.2860.4. In this approximation,
the residuals are not lowered drastically; the maximal re

FIG. 15. A plot ofr(N) vs N on log-log scales. The plus sign
denote the simulation results, the dashed line denotesra(N), the
best fit to the three-parameter approximation of Eq.~2.28!, with u
51. The circles denote the enumeration results.
7-13
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tive residual is 1.131024 andx250.2. The error estimate o
the fourth parameterC is much greater than the error es
mates of the other parameters. The contribution of the t
with the C parameter is on the same order of magnitude
the residuals, at least for the data points with largeN’s. This
implies that there may be significant contributions from t
noise~the errors!, and therefore its inclusion is redundant.

IV. SUMMARY

In this paper, we continue our endeavor to solve cylind
cal DLA analytically, i.e., to calculate the steady-state av
age densityr as a function of the cylinder widthN, and to
find the fractal dimensionD. Unlike our previous work,
which deals with bond-sticking conditions@14#, this work
solves for site-sticking conditions. The immediate proble
in following our Markovian method is that, except forN
52,3, there is usually an infinite number of configuration
The caseN54 has an infinite number of configurations, b
is still relatively simple. The large variety of possible com
plex interface shapes forN>5 prevents the inclusion of al
the configurations and compels the use of an approxima
scheme, in which only a finite number of rowsO of the
growing front near the tip are included. This approximati
works because of the exponential decay of the Laplace
tential F inside deep fjords. The approximation leaves a
nite number of configurations to work with, and thus t
computational procedure can be completed.

We find that this is a well-controlled approximation,
the sense that any desired numerical accuracy can
achieved provided that a high enough order of approxima
O is used. The results are summarized in Table I, wh
shows the computed densityrc for various values ofN andO
along with the number of relevant configurationsNc . An
evident fact is thatNc grows very rapidly as a function ofO
and N, making it impractical to perform the calculation fo

FIG. 16. The relative residualsv5(r2ra)/r ~the plus signs! vs
N on semilogarithmic scales. The upper and lower triangles sh
the estimated confidence intervals~errors! of the simulation data,
6s.
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wide cylinders. We note that in order to obtain the sa
relative accuracy, it is necessary to useO}N, e.g., in order
to obtain a relative accuracy better than 1024 one should use
at leastO5N21. This is the case forN<7, where the re-
sults are very accurate, but not so forN>8, where our avail-
able computer resources allowed only lower-order compu
tions. As discussed in Sec. II D, we are able to improve
estimates in these cases by extrapolatingO→`, taking ad-
vantage of the universal exponential decay ofrc(N,O)/r(N)
with the scaled variableO/N. Table I also compares th
enumeration estimates with direct measurements from si
lations, and finds them to agree within the simulation erro
Once accurate estimates are obtained forr(N) for N<10,
they are fitted to a power-law approximation with a corre
tion to a scaling term according to Eq.~2.28!. The fit ~with
u51) gives an estimate of the fractal dimensionD51.68
60.01.

Besides the range 2<N<10, simulations are also per
formed on cylinders with largerN’s in the range 10<N
<128. The relative errors of the measurements ofr(N) are
estimated around 1024. The simulation data are also fitted t
the same approximations. Once again, the three-param
approximation proves most appropriate and the resul
fractal dimension this time isD51.67160.001. The fact that
the enumeration and simulation-based estimates of the fra
dimension are very close is a good indication of their ac
racy.

The last statement should be taken with some caution
light of evidence that raises doubts concerning self-simila
in radial DLA @19–21#, or suggesting some very slow cros
overs @22,23#. Indeed, radial DLA is somewhat differen
from cylindrical DLA, as manifested by the difference b
tween their fractal dimensions:D51.71 for radial DLA
@24,25# andD51.66 for cylindrical DLA ~this difference is
still not fully understood!.

We also tried performing the exact calculations forN
511 and 12, but managed to go only up toOmax54. This
was insufficient for extrapolation with an accuracy that
comparable to the rest of the data points. With the aid
stronger computers, we think that it would be possible a
beneficial to compute a few more data pointsr(N), which
would help to obtain more accurate estimates of the fra
dimension. Also, the techniques discussed here could
used to find the fractal dimension of cylindrical DLA in 3D
However, since a much larger number of configurations
be expected, this task would also probably require the aid
a very strong computer.

There are a few differences between site DLA and bo
DLA. The boundary conditions for the Laplace equation a
a little bit different; in bond DLA, the potential is set to zer
on the aggregate itself, whereas in site DLA, the potentia
set to zero on sites that are nearest neighbors of the ag
gate. Also, the growth probabilities are computed somew
differently: in bond DLA, contributions are summed ov
bonds that go out of a site where sticking may occ
whereas they are summed over bonds that go into it in
DLA. The normalization factor, however, is equal to th
width N in both cases. In the case of site-sticking conditio
there is an effective thickening of branches and thus a n

w
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rowing of fjords. Thus, there is a notable decrease in
probability of a random walker to penetrate deep into fjor
This also causes the number of configurations for a partic
choice ofN and O to be considerably less for site DLA i
comparison with bond DLA. Therefore, accurate enume
tion results can be obtained for largerN’s and O’s in site
DLA. The extrapolationO→` performed in this paper wa
not done in Ref.@14#, which deals with bond DLA, becaus
the technique was not developed at that time. When we a
the method to the bond-DLA case, we manage to impr
the relative accuracy of the highest available approximatio
rc„N,Omax(N)… for N56,7, by an order of magnitude: from
about 1.231023 to 231024 for N56 and from 531022 to
1.631023 for N57. This extrapolation is based on the da
points forN55. The relative accuracy ofrc„N,Omax(N)… for
N<5 is better than 1024 and hence the extrapolation is n
ev

ys

L.

I
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necessary. The estimate of the fractal dimension for
DLA, D51.68, is to be compared with the bond-DLA en
meration resultD51.64 @14#. In contrast, the difference in
the simulation results for the two cases is smaller:D51.67
for site DLA andD51.66 for bond DLA. Given the uncer
tainties, our results are consistent with universality with
spect to the sticking conditions@15,6#.
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